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ABSTRACT
Knowledge is structured – until it is stored to a wiki-like
information system. In this paper we present the multi-user
system SnoopyDB, which preserves the structure of knowl-
edge without restricting the type or schema of inserted infor-
mation. A self-learning schema system and recommendation
engine support the user during the process of inserting in-
formation. These dynamically calculated recommendations
develop an implicit schema, which is used by the majority of
stored information. Further recommendation measures en-
hance the content both semantically and syntactically and
motivate the user to insert more information than he in-
tended to.

Categories and Subject Descriptors
H.3.5 [Storage and Retrieval]: Online Information Ser-
vices - Web-based services; H.4.m [Information Systems]:
Miscellaneous

General Terms
Algorithms, Design, Experimentation, Human Factors

Keywords
Semistructured Data, Recommendations, Human Interac-
tion, Ranking, Semantic Web, RDF

1. INTRODUCTION
Wikis are a major paradigm for storing information on-

line in an easy, efficient and collaborative way. However,
information is stored as plain text and therefore lacks any
structure. Thus, complex queries – like “Which Austrian
cities have more than 10.000 inhabitants and have a female
mayor?” – are not feasible, as fulltext search is not power-
ful enough. Weikum et al. [3] pointed out that there is a
need for rich information repositories, which support both
structured and unstructured information to fully exploit the
advantages of both worlds. Semistructured information sys-
tems provide such advantages, but do not place any restric-
tion on the schema of knowledge. Therefore, multi-user sys-
tems naturally lead to a proliferation of schemas and sub-
structures. According to Boulain et al. [1], Wikipedia has
to cope with the same problem as only 35% of all edits in
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Wikipedia are changes of content. All other edits are re-
lated to structure (e.g avoiding proliferation) and do not con-
cern the content itself. Even in the case of template-based
schemas of infoboxes at Wikipedia, which are supervised and
enforced by the community, Wu and Weld [4] showed that
schemas are divergent, noisy and contain many untyped at-
tributes.
We present SnoopyDB, a novel information system, which
is able to cope with these problems by facilitating structure
and developing a common schema by providing recommen-
dations.

2. SNOOPYDB
SnoopyDB stores information as collections, which are

similar to wiki pages and consist of an arbitrary number
of key-value pairs. Therefore, all information can be repre-
sented as RDF-triples consisting of collection, key and value,
which are very well suited for the description of any (real-
world) resource [2]. As already pointed out, such a semi-
structured storage method would lead to the proliferation of
substructures. SnoopyDB copes with this problem by pro-
viding intelligent recommendations, which is described in
the following section.

2.1 Schema Alignment by Recommendations
SnoopyDB aims at creating a homogenous structure within

the information system. Hence the user is guided by recom-
mendations during the insertion process in order to align
the entered information to a commonly used schema. The
self-adapting schema is implicit and dynamically calculated
based on all already stored information within the system.
In contrast to common wiki systems, the process of inserting
information into SnoopyDB does not only consist of one rigid
step. SnoopyDB is based on a dynamic, cyclic and guided
process, as shown in Figure 1: At first the user starts to
enter a key (1). Subsequently SnoopyDB analyses the en-
tered key and suggests possible enhancements (2): While
the user types, SnoopyDB computes context-sensitive rec-
ommendations, which suggests keys containing the newly
entered string and are already present in the information sys-
tem. To rank the potentially large set of suggested keys, the
context is taken into account. Consider the example of a user
who has just entered “continent: Europe” and is defining the
next key “number”. In this case, SnoopyDB ranks the rec-
ommendation of the key“numberOfInhabitants”higher than
the key“numberOfChildren”, as“numberOfInhabitants”and
the key “continent” occur together in many already stored
collections.



Figure 1: Guided insertion process cycle.

These recommendations also include spelling issues and com-
plex enhancements in order to avoid the (extensive) use of
synonyms – e.g. the commonly used key “numberOfInhabi-
tants” is suggested to be used instead of the user’s key “pop-
ulation”. In step (3), the user enters a value corresponding
to the key and is supported by suggestions as well (4). Fur-
thermore, SnoopyDB ”snoops” as much information as pos-
sible from the user, e.g. about the semantics of the newly
inserted value or the datatype of the entered information.
For instance, in the case of homonyms SnoopyDB provides
links to already present, applicable collections which allows
the user to clarify the semantics of the entered key. For
example, the specification of the key-value pair “twinCity:
Freiburg” leads to recommendations of links to “Freiburg
(Germany)” or “Freiburg (Switzerland)” and therefore a se-
mantic enhancement.
Based on the newly entered keys (a), SnoopyDB computes
possible further keys, which are contextually connected to
the current ones entered by the user (b). These keys, which
are thematically compatible with the type of information
the user wants to insert, are recommended and the user is
encouraged to enter more information than he intended to
(additional information is “snooped”). By accepting some of
these additional recommended keys (5), the user starts en-
tering information at step (1) again. The recommendations
are further refined with each cycle as there is more informa-
tion available for the calculation of recommendations.
The recommendations are based on a data mining process
which determines the common schema by extracting asso-
ciation rules and appliying a context-sensitive filter on the
resulting suggestions. This self-learning recommendation al-
gorithm maintains a commonly used, self-adapting schema,
avoids synonyms, enhances the semantics of homonyms and
facilitates the usage of a common vocabulary in the infor-
mation system.

3. PRELIMINARY RESULTS
Experiments were conducted by human test users as de-

clining or accepting recommendations cannot be simulated
artificially. Therefore, two different prototype implementa-
tions were used: (I) SnoopyDB as described above and (II) a
reduced SnoopyDB version without any recommendations,
suggestions or any further guidance mechanisms. Fifteen
test users chose arbitrary cities or musicians and entered
relevant information firstly in system II and subsequently in
system I. The results convincingly showed that SnoopyDB’s
guidance mechanisms are able to create a common schema
(see Figure 2). In the SnoopyDB-system we observed a 33%
smaller set of distinct property names used within the sys-
tem (154 vs. 229 different property names on 50 collections)
while at the same time, users indeed entered more informa-
tion in the guided interface as can be seen from the number
of entered properties (840 properties in I vs. 678 properties
in II lead to additional 24% of data).

Figure 2: Total properties vs. distinct properties.

4. CONCLUSION
We presented SnoopyDB, a flexible information system for

semistructured data which aims at aligning stored data to
a common structure by providing intelligent recommenda-
tions during the insertion process. These recommendations
enable the system to “snoop” as much information as pos-
sible, since most inserting users have extensive knowledge
about the inserted collection. Without these recommenda-
tions, the additional knowledge – in our experiments 24%
more data – would be lost. We showed that SnoopyDB
significantly contributes to a common, implicit schema by
reducing the proliferation of keys by 33%.
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