
Storing and Querying Ontologies in
Logic Databases

Timo Weithöner1, Thorsten Liebig2, and Günther Specht1

1 Dept. of Databases and Information Systems
University of Ulm

D-89069 Ulm
{timo.weithoener|specht}@informatik.uni-ulm.de

2 Dept. of Artificial Intelligence
University of Ulm

D-89069 Ulm
liebig@informatik.uni-ulm.de

Abstract. The intersection of Description Logic inspired ontology lan-
guages with Logic Programs has been recently analyzed in [GHVD03].
The resulting language, called Description Logic Programs, covers RDF
Schema and a notable portion of OWL Lite. However, the proposed map-
ping in [GHVD03] from the corresponding OWL fragment into Logic
Programs has shown scalability as well as representational deficits within
our experiments and analysis. In this paper we propose an alternative
mapping resulting in lower computational complexity and more repre-
sentational flexibility. We also present benchmarking results for both
mappings with ontologies of different size and complexity.

1 Introduction

Current research within the Semantic Web aims at combining knowledge repre-
sentation methods with techniques of the Web. Such a combination would enable
meaningful communication between people and heterogenous information pro-
cessing systems for inter- and intranet applications. Ontologies play a pivotal
role within such a framework by providing a shared and common understanding
of a domain of interest. Formally, an ontology is a logical theory accounting for
the intended meaning of a formal vocabulary, i. e. its ontological commitment to
a particular conceptualization of the world [Gua98].

Reasoning about logical theories requires logic-based inference systems which
has been well studied within the field of knowledge representation in the AI com-
munity over the last decades. Description Logics (DL’s) as a decidable fragment
of first-order logic turned out to be an adequate formalism for representing and
reasoning about expressive ontologies. As a consequence DL’s form the formal
foundation of W3C’s Web Ontology Language (OWL), a proposed standard for
a semantic markup language for publishing and sharing ontologies on the World
Wide Web.

specht
Proc. Semantic Web and Databases, SWDB 2003, VLDB-Workshop, Berlin, 7-8. Sept. 2003, http://swdb.semanticweb.org

specht

specht

One of the key design goals for OWL was highest possible expressiveness
[Hef03]. However, the more expressive a language is, the more difficult it will be
to learn or to use this language. OWL has been criticized because of its high lan-
guage complexity even by one of its language designers [vH02]. While analyzing
online accessible ontologies the same language designer also noticed, that even
experienced users exploit a very limited subset of the available language primi-
tives in general. Beyond that, reasoning about ontologies with an expressiveness
comparable to that of OWL requires sophisticated logical theorem provers, which
are currently only available as research prototypes. Such systems have proven to
be fast as well as reliable at least with most of the academic ontologies available
so far. However, they are designed to deal with ontologies completely processable
within a computers primary memory. In fact, we expect much larger ontologies
for real world applications in the near future which very likely will not solely
be loadable into (virtual) main memory. More concrete, realistic applications
scenarios within the vision of the Semantic Web refer to (currently non-existent)
ontologies with a limited set of language primitives but a very large set of in-
dividuals (flight schedules, phone books, etc.). Obviously, database technology
will be necessary in order to be able to deal with ontologies of this size.

In this sense, as an alternative to tableaux-based DL theorem provers Grosof
et. al. [GHVD03] recently suggested a mapping of a DL subset into Logic Pro-
grams (LP) suitable for evaluation with Prolog. This intersection of DL with LP
called DLP completely covers RDF Schema and a fraction of OWL (notably most
of OWL Lite extended with general concept inclusion). This approach is called
the “Direct Mapping” approach in the following. Logical database systems seem
most suitable to combine LP with efficient and persistent data storage. However,
applying the Direct Mapping approach for loading, storing and evaluating on-
tologies in logical database systems has shown some significant scalability deficits
as well as representational drawbacks. Therfore, we developed a new mapping
without this limitations which we call the “Meta Mapping” approach below. This
approach is meta in the sense that it maps the LP subset of OWL into a higher
representational level resulting in lower computational complexity and more rep-
resentational flexibility. For this reason the Meta Mapping approach is especially
suitable for storing and processing ontologies within logical databases. In this
paper we present our new Meta Approach together with some benchmarking
results for both approaches.

The remainder of this paper is organized as follows. In the next section we
will give an overview over logic based ontology languages currently proposed by
the W3C and their relationship to Logic Programs as used in logic databases.
Readers familiar with OWL and Logic Programs should skip Section 2. Section 3
explains the Direct Mapping approach from the DLP fragment of OWL to LP’s
proposed by Grosof and Horrocks et. al. [GHVD03]. In Section 4 we present our
Meta Mapping approach while making use of examples showing the conceptual
differences between the two approaches. Section 5 contains benchmarking results
for both mappings with ontologies of different size and complexity. We will end
with a discussion about the pros and cons of the different mappings.

2 Preliminaries

This section will shortly introduce OWL. In particular, we will give syntax ex-
amples and their semantics in terms of corresponding First Order Logic (FOL)
formulae. We then characterize the intersection of LP’s with OWL. Reader fa-
miliar with OWL and LP’s may skip this section.

2.1 Ontology Languages for the Web

The proposed mechanism for meaningful communication between people and / or
machines within the World Wide Web is to add semantic markup to Web re-
sources in order to explicitly describe their content. This semantic markup makes
use of terms for which ontologies provide a concrete specification of their mean-
ing.

The significant term structure of ontology languages currently under devel-
opment for the Web consists of at least two elements (see also [Hef03]): classes
and relationships (called properties) that can exist among classes.

RDF Schema. The two basic structuring elements from above are provided by
the Resource Description Framework Schema (RDFS), the lowermost ontology
language of the Semantic Web language layer architecture. As with the follow-
ing ontology languages, RDFS usually is serialized as XML document in order
to meet the syntactical requirements of todays Web communication protocols.
RDFS can be considered as a very simple ontology language allowing the defini-
tion of class hierarchies via subClassOf statements. Exemplarily, a dog can be
defined as some kind of mammal as follows:

<rdfs:Class rdf:ID="Dog">
<rdfs:subClassOf rdf:resource="#Mammal"/>

</rdfs:Class>

[Ex. 1]

Semantically this can be expressed in FOL as an implication between two unary
predicates: ∀x : Dog(x)⇒ Mammal(x) (DL abstract notation: Dog v Mammal).

The possible combinations of classes and properties can be restricted by
qualifying the domain and range of properties. An owner relationship for dogs,
called Dog-Owner, is narrowed in its domain to the class Human and in its range
to Dog in the following:

<rdf:Property rdf:ID="Dog-Owner">
<rdfs:domain rdf:resource="#Human"/>
<rdfs:range rdf:resource="#Dog"/>

</rdf:Property>

[Ex. 2]

The FOL correspondence to properties are binary predicates. According to that,
the semantics of the property definition in example 2 is as follows: ∀x, y :
Dog-Owner(x, y) ⇒ Human(x) and ∀x, y : Dog-Owner(x, y) ⇒ Dog(y) (DL: > v
∀Dog-Owner.Human, > v ∀Dog-Owner−.Dog).

Property hierarchies can also be defined analogous to class hierarchies using
subPropertyOf statements.

Web Ontology Language (OWL). OWL is developed as a vocabulary ex-
tension of RDF Schema1 and is derived from the DAML+OIL Web ontology
language. This extension covers class language constructs like conjunction, dis-
junction, negation, existential and universal qualified quantification and cardi-
nality constraints of properties (plus some others). OWL itself provides three
increasingly expressive sublanguages. The least expressive sublanguage is OWL
Lite. With focus on the intersection of OWL with Logic Programs we will give
a more detailed explanation for some of OWL Lite’s language constructs here.
For syntax and semantics of all constructs see [vHHH+03] resp. [PSHH03].

In OWL a class can be defined as conjunction of other classes or class descrip-
tions using the intersectionOf statement. For example, it might be rational to
define Puppy as the conjunction of the classes Dog and Young-Animal:2

<owl:Class rdf:ID="Puppy">
<rdfs:subClassOf>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Dog"/>
<owl:Class rdf:about="#Young-Animal"/>

</owl:intersectionOf>
</owl:Class>

</rdfs:subClassOf>
</owl:Class>

[Ex. 3]

Semantically, this corresponds to logical conjunction in FOL: ∀x : Puppy(x) ⇒
Dog(x) ∧ Young-Animal(x) (DL: Puppy v Dog u Young-Animal).

So far, all class definitions result in logical implication with respect to their
definition. They are therefore called necessary class definitions. In contrast, it
is possible to give a necessary as well as sufficient definition for a class. In the
following example it is a necessary as well as sufficient condition being a Dog and
a Rabit-Animal for being a Rabit-Dog:

<owl:Class rdf:ID="Rabit-Dog">
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Dog"/>
<owl:Class rdf:about="#Rabit-Animal"/>

</owl:intersectionOf>
</owl:Class>

[Ex. 4]

Logically this corresponds to an equivalence between Rabit-Dog and its defining
conjunction: ∀x : Rabit-Dog(x)⇔ Dog(x)∧Rabit-Animal(x) (DL: Rabit-Dog ≡
Dog u Rabit-Animal).

Universal qualified quantification is a language construct for locally restrict-
ing the range of a given property within a class definition. E. g., a Doghouse is
a house for which all fillers of the property Occupants are of type Dog:
1 However, OWL does not include RDFS’s recursive meta model property.
2 Since OWL is layered on top of RDFS the examples from above are easily con-

verted into OWL by changing rdfs:Class into owl:Class and rdf:Property into
owl:ObjectProperty.

<owl:Class rdf:ID="Doghouse">
<rdfs:subClassOf>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#House"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#Occupant"/>
<owl:allValuesFrom rdf:resource="#Dog"/>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>
</rdfs:subClassOf>

</owl:Class>

[Ex. 5]

The fragment from above has the following semantics in FOL: ∀x : Doghouse(x)⇒
House(x) ∧ (∀y : Occupants(x, y) ⇒ Dog(y)) (DL: Doghouse v House u
∀Occupants.Dog).

Additionally, OWL Lite extends RDFS for transitive, inverse, and symmetric
properties. A perfect example of a transitive property within our dogs world is
the descendants relationship Dog-Offspring:

<owl:TransitiveProperty rdf:ID="Dog-Offspring"/> [Ex. 6]

Semantically, a transitive property enforce that: ∀x, y, z : (Dog-Offspring(x, y)∧
Dog-Offspring(y, z)) ⇒ Dog-Offspring(x, z) (DL: Dog-Offspring+). An in-
verse property of a given property can be defined as follows:

<owl:ObjectProperty rdf:ID="Is-Dog-Of">
<owl:inverseOf rdf:resource="#Dog-Owner"/>

</owl:ObjectProperty>

[Ex. 7]

In FOL this means: ∀x, y : Is-Dog-Of(x, y) ⇒ Dog-Owner(y, x) and vice versa
(DL: Is-Dog-Of ≡ Dog-Owner−). A symmetric property can be introduced as
follows:

<owl:SymmetricProperty rdf:ID="Friend-Of"/> [Ex. 8]

This definition imposes the following FOL semantics: ∀x, y : Friend-Of(x, y)⇒
Friend-Of(y, x).

Until now, we have only defined a formal vocabulary. In DL terminology such
a vocabulary is called a TBox. In contrast, an ABox specifies concrete individuals
with respect to a given TBox vocabulary. For example, Fluffy as a concrete dog
can be defined by instantiating the class Dog:

<Dog rdf:ID="Fluffy"/> [Ex. 9]

Such a class instantiation corresponds to an unary predicate instantiation in FOL
(and abstract DL): Dog(Fluffy). Let us assume we also want to assert a particu-
lar doghouse (with name Fidos-Kennel) occupying Fido an animal with rabies.
FOL equivalent: Doghouse(Fidos-Kennel), Occupant(Fidos-Kennel, Fido) and
Rabit-Animal(Fido):

<Doghouse rdf:ID="Fidos-Kennel">
<Occupant>
<Rabit-Animal rdf:ID="Fido"/>

</Occupant>
</Doghouse>

[Ex. 10]

The underlying semantics of our definitions allows to infer logically entailed
knowledge implicitly encoded in our dogs world ontology. Usually, logical rea-
soning systems are used for making such knowledge explicitly available for users.

Concerning our example a simple inference chain could be the following. Since
all occupants of a doghouse necessarily have to be dogs (due to the definition of
Doghouse in Example 5) it follows, that Fido has to an instance of class Dog. As
a consequence Fido is also classified as a Rabit-Dog because being a dog and a
rabid animal is sufficient for being a Rabit-Dog.

2.2 Intersecting OWL with Logic Databases

Based on the analysis of the intersecting language of DL with LP in [GHVD03]
we will shortly characterize the resulting language of the intersection of DL
inspired OWL with LP in the following.

Logic Programs (LP) consist of a set of rules having the form:

A← B1 ∧ . . . ∧Bn with n ≥ 0

where A,Bi are atomic formula of predicates of arbitrary arity. A is called the
head of the rule and the conjunction of Bi’s is called the body. Atomic formula
are allowed to be “negated”. Note that this negation has to be interpreted as
negation-as-failure. Negation-as-failure as well as other LP features (like proce-
dural attachments) are not expressable in FOL and therefore also not expressable
in logic based ontology languages. On the other hand predicates in LP are not
restricted in their arity in contrast to DL. In addition DL restricts the usage
of (implicit) free variables in quantifying expressions with guarding property
predicates. As a result the intersection of DL with LP can be characterized as a
definite (without negation-as-failure) equality-free Horn fragment of FOL, called
Description Logic Programs (DLP) in [GHVD03].

Since OWL is a DL inspired language it covers DLP completely. More precise,
DLP covers most of OWL Lite (the least expressive sublanguage of the OWL
family) plus a portion of OWL DL, namely general concept inclusions (GCIs)
with disjunction and qualified existential qualification on the l.h.s. However,
GCIs are not very common in ontologies so far, we will focus on the intersection
of OWL Lite with LP, which we will call OWLP Lite for the rest of the paper.

3 The Direct Mapping Approach

In the following we will provide two approaches of converting ontologies into logic
programs. Starting with the previously published proposal in [GHVD03], the

direct mapping approach, we will suggest an alternative meta mapping approach
in Section 4. After that we will provide an evaluation and comparison of both
approaches, which makes it necessary to have a look at different aspects like the
number of facts and rules contained in the resulting logic programs.

A straight forward approach to convert ontologies into a logic program is de-
scribed in [GHVD03]. This approach maps every class or property definition con-
tained in the ontology into a rule and every class-instance or instance-property-
instance relationship into a fact. In the following we summarize this method of
mapping into a description logic program.

3.1 The Mapping

Every concept instantiation is mapped to a unary relation with the concept name
becoming the name of the relation and the individual name becoming the only
argument. For example the statement that Fluffy is an instance of concept Dog
(see Example 9) is mapped into the fact:

Dog("Fluffy"). [Ex. 11]

Every instance-property-instance relationship is mapped into a binary relation
with the property’s name becoming the name of the relation. The first argument
is the name of the individual, the second argument is the property’s value. Given
a property Occupant, let us assume Fidos-Kennel being occupied by Fido (as
defined in Example 10):

Occupant("Fidos-Kennel", "Fido"). [Ex. 12]

In addition, concept as well as property constructor statements are converted
into a set of rules. In this step it gets obvious, why we called this approach the
Direct Mapping approach. Every subclass relationship stated in the ontology is
directly mapped into a corresponding logic program rule. As a consequence the
OWL fragment defined in Example 1 is converted into:

Mammal(X) :- Dog(X). [Ex. 13]

For a mapping of the rest of the OWLP Lite language constructs see Table 1.
Note, that the EquivalentClasses relationship is just a mutual SubClassOf rela-
tionship. An EquivalentClasses relationship can be simulated by two SubClassOf
statements using both defintion directions.

3.2 Size of the Resulting Program

Let us now have a look at the resulting logic program of a given ontology with a
set C of classes and a set P of different properties. Let Rc with c ∈ C be the set
of rules required to express c. With I being the set of class instantiations (see
Example 11) and V the set of property instantiations (see Example 12) defined
within the ontology we get an total of

Table 1. Shows OWL statements and there representation in a logic program as sug-
gested [GHVD03]. See Section 3.2 for definition of Rc.

OWL Abstract Syntax [PSHH03]
Definition of class c

DLP Statements
Rule set Rc

|Rc|

SubClassOf(c b) b(X) :– c(X). 1
SubClassOf(unionOf(b1 ... bn) c) c(X) :– b1(X).

...
c(X) :– bn(X).

n

SubClassOf(c intersectionOf(b1 ... bn)) c(X) :– b1(X), ..., bn(X). 1
SubClassOf(intersectionOf(b1 ... bn) c) b1(X) :– c(X).

...
bn(X) :– c(X).

n

SubClassOf(c restriction(p
allValuesFrom(b)))

c(X) :– p(X, b), anonID(X). 1

SubClassOf(restriction(p
someValuesFrom(b)) c)

anonID(X) :– p(X, b), c(X). 1

∑
c∈C
|Rc| (1)

rules and

S = |I|+ |V| (2)

facts, while the number of different predicates is

K = |C|+ |P| (3)

To understand of the above we will establish two criteria to compare different
ontologies: Size and complexity of an ontology. Size means the number of concept
and property instantiations included (see S in Equation 2) while complexity
means the number of different concepts (see K in Equation 3). For example you
would expect that an ontology made from data contained within a phonebook,
would be of very limited complexity (containing only a very limited number
of concepts like name, address and phone number) but of huge size (listing all
inhabitants and thus having lots of individuals). Nevertheless the number of
rules in the resulting logic program is growing linear with the number of concept
and property definitions in the ontology.

3.3 A first assessment of the approach

Limitations. Looking at the logic program fragments as discussed above we
soon realize that this approach has some significant weaknesses:

– First, the concept names cannot be accessed from within the logic program.
For that reason it is virtually impossible to get an answer to the question
“give me all classes the individual I is instance of”.

Reconsider Example 10 out of our dogs ontology. We are aware of the fact
that Fido is a Rabit-Animal. However we are not able to retrieve all classes
Fido is an instance of unless we manually walk through every possible class
and ask whether Fido is instance of this class. Which is not very efficient
and would require to know all class names of the ontology.

– The transformation creates a limited number of facts. One for every class
instantiation and one for every property instantiation. The number of differ-
ent relations depends on the number of classes and properties defined in the
ontology. One can expect to get a very limited number of facts per relation.
While the number of facts remains manageable the number of different rules
grows linear with the complexity of the ontology (the knowledge included
within). See Table 1 for the number of rules needed to express a given OWL
statement.

– The names of the relations used and the structure of the rules involved vary
from ontology to ontology. Consequently precompilation or query optimiza-
tion become an real issue in this approach.

Possible Improvements. Two things have to be done to overcome the limi-
tations mentioned above.

1. The rules and facts have to be pushed to a meta level, where names of
concepts and properties become arguments of “meta predicates”. As a result
concept and property names can be reached from within the logic program
easily.

2. We should try to get a constant set of rules valid for all ontologies accom-
panied by a set of fact predicates with constant names. Like this queries
would look the same for every single ontology with the only difference in the
amount of facts that have to be processed to get an answer.

The following section will suggest an approach which will produce a logic pro-
gram following the above considerations.

4 The Meta Mapping Approach

This section will describe our approach of mapping an ontology into a logic
program suitable for a deductive database. We will show that even if an ontology
grows in complexity the resulting logic program will have a constant number of
rules and predicates. And we will show how ABox as well as TBox reasoning
become possible without the limitations from above.

4.1 The Basic Idea

Basically we convert the OWL statements contained in an ontology into a set
of facts reflecting the content of the ontology. Coming from the Direct Mapping
approach we basically push all facts defined there to a meta level comparable (at

least in parts) to the HiLog [CKW93] approach which has a higher-order syntax
and allows terms to appear in places where predicates and atomic formulas occur
in FOL. The meta mapping is realized by two new relations, which collect all
facts defined in the various relations of the Direct Mapping approach.

Class Instantiation. Asserting instance i to be of class C results in instanti-
ating the binary relation named type in the following way:

type("i", "C").

Property Instantiation. Likewise property instantiations are mapped into a
relation named propInst with three arguments and constant name propInst.
Arguments are the property name P, instance name i and property value v:

propInst("P", "i", "v").

Compared to the “Direct Mapping” Approach we avoid having one additional
relation per property definition, by pushing the relation names into predefined
“meta relations”. As a consequence concept and property names are now easily
accessible from within the logic program. Table 2 compares the resulting logic
program fragments from Examples 9 and 10 for both approaches.

Table 2. Individual and property definition in the different approaches

Direct Approach suggested
in [GHVD03]

Our Meta Approach

Fluffy is a Dog Dog("Fluffy"). type("Fluffy", "Dog").
Fido is the Occupant

of Fidos-Kennel
Occupant("Fidos-Kennel",
"Fido")

propInst("Occupant",
"Fidos-Kennel", "Fido").

Handling of Class Constructors. Let us once again have a look at the very
basic OWL fragment stating that concept Dog is a subclass of concept Mammal
as defined in Example 1. The Direct Mapping approach would create a rule
which would say that every individual of type Dog is also an individual of type
Mammal (See Example 13). Please note that the explicit knowledge of the subclass
relationship gets lost. All we still know is that every Dog is also a Mammal. In the
Meta Mapping approach subclass relationships or any other kind of constructors
are not converted into a rule covering the meaning of the statement but into a
fact which states, that the ontology defines such a relationship. Consequently
the number of rules is not increased if a new class is constructed and no new
relations are needed, as there is a fixed number of predefined relations, reflecting
the vocabulary of OWLP Lite. The above example would consequently look like
this in the Meta Mapping approach:

isSub("Dog", "Mammal"). [Ex. 14]

In order to reflect the underlying semantic of the introduced meta relations,
we will have to add some rules, which work on the given facts. The following
rule defines that if an individual I is instance of concept Y and Y is subclass of
concept X, I is also an individual of class X:

type(I, X) :- isSub(Y, X), type(I, Y).

As the rule can be used with any combination of bound and free variables,
every kind of class-instance query (ABox reasoning) is possible (in contrast to
the Direct Mapping approach). Additionally the transitivity of the subclass re-
lationship is covered by the following rule:

isSub(X, Y) :- isSub(X, Z), isSub(Z, Y).

As you can see the above rules are completely independent of any entities
defined in the ontology and can thus be used for every ontology. With the com-
bination of the ontology specific facts and the general rule we can now perform
all A- and TBox queries.

Table 3. Shows how A- and TBox reasoning is performed in the different approaches

Query Meta Approach Direct Approach

Is given individual i in-
stance of given class C?

?type("i", "C"). ?C("i").

List all instances of given
class C.

?type(I, "C"). ?C(I).

List all classes given in-
dividual i is instance of.

?type("i", C). Manually go through ev-
ery known class C and
check for ?C("i").

Check if given class C is
subclass of given class D.

?isSub("C", "D"). Create new instance iC
of class C and check
whether iC is also in-
stance of class D.

List subclasses of given
class C.

?isSub(X, "C"). Manually go through ev-
ery known class D cre-
ate new instance iD from
this class. Check whether
iD is also instance of C.

While the queries in our Meta Mapping approach only require basic knowl-
edge of the entities defined in the ontology, Direct Mapping approach requires
complete knowledge of all class names defined to be able to perform any class
hierarchy query. This constitutes a big disadvantage for the user, as he either
has to keep track of all class names and the results of his queries are always
questionable or he has to provide and use additional predicates providing class
(and property) names.

4.2 The Rule Set

In the above section we mentioned two rules which provide the logic behind the
meta level relations we defined to store the ontologies knowledge. Depending on
the number of different constructors used in the ontology this set of rules will vary
in size. But the size of this rule set is not depending on the size or complexity
of the ontology. E.g. if an ontology uses the intersectionOf statement the
corresponding rules have to be added to the logic program. Any further use of
the intersectionOf statement will not increase the rule set. Nevertheless for the
following considerations we assume the rule set to be constant. This is achieved
by working with the complete rule set, containing rules for every OWLP Lite
statement no matter if they are used in the ontology or not. Table 4 shows some
of the required facts for comparision with the Direct approach (see Table 1).
Table 5 gives a nearly complete summary of the required rules and facts of our
Meta Mapping approach.

Table 4. Shows OWL statements and there representation in a logic program

OWL Abstract Syntax
Definition of class c

DLP Statements
Fact set Fc

|Fc|

SubClassOf(c b) isSub(c, b). 1

SubClassOf(c unionOf(b1 ... bn)) rhsUnionOf(c, {b1,..., bn}). 1

SubClassOf(c intersectionOf(b1 ... bn)) rhsIntersectionOf(c, {b1,..., bn}). 1

SubClassOf(intersectionOf(b1 ... bn) c) lhsIntersectionOf(c, {b1, ..., bn}). 1

SubClassOf(c restriction(p
allValuesFrom(b)))

rhsAllValuesFrom(c, p, b). 1

SubClassOf(restriction(p
someValuesFrom(b)) c)

lhsSomeValuesFrom(c, p, b). 1

4.3 Influence of the Ontology’s Size

Again we have to consider the size of the resulting logic program in dependence of
the size and complexity of the given ontology. With I being the set of individuals,
P the set of properties defined in the ontology, V the property values defined,
C being set of concepts defined within the ontology and finally Fc with c ∈ C
being the set of facts required to express concept c we get an total of

|I|+ |V|+
∑
c∈C
|FC| (4)

facts while the number of different predicates as well as the number of dif-
ferent rules remains constant independent of the ontology. Depending on the
implementation – and the optimizations within – these numbers may vary but

Table 5. Shows a selection of the rules required in the Meta Mapping approach.

DL syntax “Meta Mapping” representation

i : C type("i", "C").

type(I, C) :- type(I, Z), isSub(Z, C).

If individual I is instance of Z and Z is subclass of class C, I
is also instance of class C.

(i, v) : P propInst("P", "i", "v").

propInst(P, I, V) :- propInst(Q, I, V),

subPropertyOf(Q, P).

If an instantiation I,V holds for property Q, it also holds for
any property P that Q is subproperty of.

C v D isSub("c", "d").

isSub(C, D) :- isSub(C, Z), isSub(Z, D).

The subclass relationship is transitive.

P v Q subPropertyOf("P", "Q").

subPropertyOf(P, Q) :- subPropertyOf(P, Z),

subPropertyOf(Z, Q).

The subproperty relationship is transitive.

> v ∀P.C domain("P", "C").

type(I, C) :- propInst(P, I, V), domain(P, C).

If instance I is in the domain of a relation P with a domain
restriction on class C, then I is an instance of C.

> v ∀P−.C range("P", "C").

type(V, C) :- propInst(P, I, V), range(P, C).

If instance V is in the range of a relation P with a range re-
striction on class C, then V is an instance of C.

C vM1u· · ·uMn rhsIntersectionOf("C", {"M1", ..., "Mn"}).

isSub(C, M) :- rhsIntersection(C, S), member(S, M).

Class C is subclass of any of the members of the intersection.

M1u· · ·uMn v C lhsIntersectionOf("C", {"M1", ..., "Mn"}).

oneOfOtherType(I,S) :- member(S,M), not type(I,M).

type(I, C) :- lhsIntersectionOf(C, S),

not oneOfOtherType(I, S).

An Individual I is an instance of C if there is no member of
the intersection of which I is not an instance of.

C v ∀P.D rhsAllValuesFrom("C", "P", "D").

type(I, D) :- rhsAllValuesFrom(C, P, D),

type(X, C), propInst(P, X, I).

If instance X of class C is related to an individual I via a
property P and the range of P is locally restricted to D in C,
then I must be of type D.

P+ v P transitiveProp("P").

propInst(P, I, V) :- transitiveProp(P),

propInst(P, I, Z), propInst(P, Z, V).

If P is a transitive property then for all property instantiations
I,Z and Z,V also the instantiation I,V holds.

either way, we are talking about a rule set, which should not exceed 20-40 rules
and about the same quantity of different predicates.

More precisely linear increase of ontology size and/or complexity leads to
a linear growth of facts but a constant set of relations and rules. In contrast
applying the Direct Mapping approach would result in linear growth of relations,
rules and facts. The following section provides a detailed performance analysis
with respect to the different approaches in a logical database.

5 Evaluation

In the preceding sections of this paper we discussed two different approaches
for mapping ontologies into description logic programs. While introducing the
approaches, we came across a number of conceptual issues, which in some cases
resulted in a loss of functionality. In other cases we presumed influence on the
preformance of the resulting logic program. Especially as ontologies are expected
to rise in size (and complexity), we will have to think about reasoning systems,
which are not entirely depend on main memory (like todays tableau reasoners
or prolog) but are able to work on data in secondary storage structures, which
immediately leads to database technology.

5.1 The Selected Database System

Deductive Database Systems. Due to the representation of the ontologies as
logic programs it is obvious to chose a logic database or – to be more specific – a
deductive database to store and query the knowledge contained in the ontologies.
In the years 1988-1992 a number of deductive database systems like LDL, NAIL,
LOLA and CORAL have been developed [Spe91]. Novel features of this systems
have been:

1. Logic programs similar to Prolog replaced SQL as database definition and
query language.

2. Arbitrary recursion (left/right hand side, quadratic) where introduced.
3. Deductive Databases abolished NF1 and allowed arbitrary (even recursiv)

term structures.

Basics of logic databases are a set at-a-time (not tuple at-a-time) bottom-up
(not top-down) evaluation. To do so logic programs are converted into a rela-
tional algebra program internally, where each predicate symbol is represented
by a relation, rules correspond to views and each fact can be understood as an
entry in a base relation. Additionally in the rule body joins are created from con-
junctions over predicates with equal variable names and instantiated terms are
converted into selections. Save negations become antisemijoins (a special kind
of set difference) and recursion is evaluated using delta iteration or seminaive
iteration respectively. Finally the transition from rule body to head becomes a
projection.

Some of these features, particularily recursion and abolishment of NF1, have
been re-adopted by the relational database technology. Consequently you will
find some of the above in SQL:99, but there are still limitations like quadratic
recursion (which is not used in either the Meta-3 nor the Direct Mapping ap-
proach).

Even though in the future a further mapping of the logic programs into
SQL:2003 might be desirable, we base the following considerations upon a de-
ductive database and thus stay with the logic programs as described in Sections 3
and 4. As both – relational and deductive – systems work with relational algebra
programs internally, we assume only minor influence on the following discussion.

The Deductive Database System Coral. For the implementation of our
test cases we have chosen the deductive database system CORAL [RSSS94], as
it is a stable, well tested and easily available system. Special technical features
of other deductive databases that would qualitatively lead to different results
will also be addressed in the following.

5.2 Measurements

When measuring the performance of a deductive database processing a logic
program two measures have to be considered. First we need to have a look at the
time needed to read the logic program into the database and second we have to
measure the time it takes to run the logic program (perform a given query). There
are certain optimization steps like magic set transformation, which are performed
at different times depending on the database system used. E.g. the deductive
database system LOLA [FSS91] is performing this optimization task after the
query is known, only considering those rules required for the specific query. In
contrast the CORAL system is performing the magic set transformation (and
other optimization like supplementary magic) when the logic program is initially
loaded into the database. Thus all binding combinations4 are precompiled in
CORAL. This gives us the opportunity to measure the time needed to perform
this optimization tasks independetly from the time needed to perform certain
queries.

5.3 Testcase

We used a set of different ontologies for our performance tests. Even though
these ontologies vary in size and complexity our main focus was the influence of
the ontologies size.

3 In fact you will find an example of a quadratic recursion in Section 4.1. This recur-
sion can easily be converted into a left/right hand side recursion in an optimized
implementation.

4 arguments in the query may be bound (without variables) or free (variables or terms
containing variables).

Testcase 1. The first set of ontologies, consisted of the a class hierarchy of 20
classes with a varying number of individuals. We used this test case to show the
influence of the ontology’s size. We measured the time needed for preprocessing
and time needed to process a class instance query.

Testcase 2. This test case consisted of a set of ontologies with a growing number
of classes and a constant number of one instance per class. It was used to show
the influence of the complexity of an ontology. We measured the time needed for
preprocessing and one class subsumption query.

5.4 Test Environment

All tests were performed on a Pentium II (350 MHz) Linux system (kernel
2.4.19) with 250MB main memory running CORAL Version 1.5.2. Time Mea-
surement was performed by the CORAL builtin commands reset timer(). and
display timer()., which where included in the logic programs. We present
“CPU Time” measurements in this paper.

5.5 Results

Loading and Preprocessing the Logic Program. Figures 2 and 1 show
that, our Meta Mapping approach outperformed the Direct Mapping approch
when preprocessing the logic program. In fact preprocessing time grows linear
with the number of instances and classes defined in the ontology. In contrast
to the Direct Mapping approach, showing exponential rise (see Figure 2) of
preprocessing time with a growing number of classes. In our test environment
we very easily reached a point where CORAL was not able to load such a logic
program within reasonable time5 while loading the same ontology converted into
a Meta Mapping approach logic program took only seconds. This also meant that
we were unable to perform a comparison of query time for really huge ontologies.
Only the Meta Mapping approach is able to handle this case.

Querying the Logic Program. When comparing query times you have to keep
in mind a number of issues which we will highlight in the following paragraphs.

Some queries can’t be performed in the Direct Mapping approach. For ex-
ample you can’t get a list of all concepts defined in an ontology. Thus there is
nothing to compare with the Meta Mapping approach.

Additionally there are a number of queries which cannot be performed in
the logic program itself when using the Direct Mapping approach. Some queries
would require some kind of manual interaction or scripting which – again – makes
it useless to compare the runtime of queries.

CORAL as well as other deductive database systems work as described in
Section 5.1 but in general do not use secondary storage structures, by now. It is
5 We aborted all tests after 30 minutes.

0

2

4

6

8

10

12

14

0 1000 2000 3000 4000 5000 6000

Seconds

Instances

Meta Approach

eee e e e e e e e e

e
Direct Approach

r rr r r
r r
r
r
r

rr

Fig. 1. Shows the time needed to preprocess the ontologies of Testcase 1 (see Section
5.3).

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700 800

Seconds

Concepts

Meta Approach

eee e e e e e

e
Direct Approach

rr r r r r
r

rr

Fig. 2. Shows the time needed to preprocess the ontologies of Testcase 2 (see Section
5.3).

thus questionable whether efficient indexing mechanisms have been implemented.
With a rising number of facts (tuples) such indexing mechanisms would be highly
desirable. Indeed first tests indicate that CORAL lacks such mechanisms, which
especially slows down the Meta Mapping approach as it has to perform a larger
number of joins (because the average number of conjunctions per rule is higher)
in comparison to the Direct Mapping approach. The Meta Mapping approach
creates only few different relations with a comparatively large number of tuples.
This is a procedure as meant for classical relational systems, which use indexing
mechanisms like B-trees. In such systems we would thus expect only logarithmic
increase in response time for the Meta Mapping approach. In fact we currently
measure linear behavior for both approaches (as can be seen in Figure 3).

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

0 1000 2000 3000 4000 5000 6000

Seconds

Instances

Meta Approacheee e e e e e e e e
e

Direct Approach

rrr r r r r r r r r

r

Fig. 3. Shows the linearity of the query time in Testcase 1 (See Section 5.3). The
quotient of the number of instances and the query processing time is constant.

When having a look at current query time measurements we realize that the
Direct Mapping approach answers faster (wherever it is able to deliver an answer
at all) than the Meta Mapping approach. However we expect contrary results
with a growing number of instances (which we cannot load into the database
system using the Direct Mapping approach) and indexing performed on the
relations.

In addition, CORAL performs the magic set transformation and other op-
timizations during the initial loading of the logic program. Other systems like
the deductive database system LOLA perform these optimizations during query

processing. As you can see from the measurements performed this time is sig-
nificantly higher (Figures 1 and 2) and growing exponatially (Figures 2) with
the Direct Mapping approach. We can thus assume, that using the deductive
database system LOLA (or any system working the same way) the query time
would grow exponentially using the Direct Mapping approach but still remain
linear using the Meta Mapping apporach.

6 Summary

The Semantic Web aims at extending the current Web in a way such that content
of Web pages will not exclusively be meaningful for humans. Here, ontologies play
a key role by providing machine processable semantics. A recent W3C working
draft proposes OWL as ontology language for the Web. However, modeling in
OWL requires quite some formal logical skills as well as elaborated reasoners
which are not available of the shelf so far. In addition, reasoning systems very
likely have to cope with much larger ontologies consisting of a huge number
of individuals in the near future. However, most of todays knowledge processing
systems are not designed to use secondary storage mechanisms and will therefore
not meet upcoming scalability requirements. In a first step, it therefore seems
promising to focus on the intersection of OWL with Logic Programs suitable
to adopt logical database technology. Logical databases provide a declarative
representation and querying language as well as efficient and persistent data
storage. A mapping of OWL into Logic Programs has recently been proposed by
[GHVD03]. In this Direct Mapping every class or property definition maps into
a rule and every class or property instantiation into a fact of the resulting logic
program. However, this approach has some representational as well as practical
drawbacks. A conceptually disadvantage with far reaching consequences is the
fact, that classes as well as properties are not accessible unless their names are
explicitly known to the user

We therefore proposed a new approach using a mapping into a logical repre-
sentation on an appropriate abstract meta level similar to a subset of the HiLog
[CKW93] higher-order syntax. We showed that this Meta Mapping overcomes
this limitations. Classes as well as properties are accessible as first class entities
within this mapping allowing comfortable query formulation.

In our approach an ontology will be mapped into a logic program consisting
of a constant number of rules with a linear growing number of facts proportional
to the number of classes and properties. In the Direct Mapping the number of
relations in the resulting logic program grows linear with the number of class
and property definitions of the original ontology. When benchmarking both map-
pings it turned out that even a linear growth in relations of the Direct Mapping
results in fatal performance during preprocessing while loading the program into
the CORAL deductive database. Our experiments also observed a linear growth
of time for class instance and subclass querying with an increasing number of
individuals for both approaches. However, in case of the Meta Mapping approach

better results are expected for systems with secondary storage indexing mecha-
nisms used in commercial systems today.

In consideration of the above we favor the Meta Mapping approach because of
its significant conceptual advantages, higher expressivity and better performance
for storing and evaluation of large scale real world ontologies in logical databases.

References

[CKW93] Weidong Chen, Michael Kifer, and David Scott Warren. HILOG: A foun-
dation for higher-order logic programming. Journal of Logic Program-
ming, 15(3):187–230, 1993.

[FSS91] Burkhard Freitag, Heribert Schütz, and Günther Specht. LOLA - A Logic
Language for Deductive Databases and its Implementation. In Procc. 2nd

International Symposium on Database Systems for Advanced Applications
(DASFAA ’91), pages 216 – 225, Tokyo, Japan, April 1991.

[GHVD03] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker.
Description Logic Programms: Combining Logic Programms with De-
scription Logic. In Proceedings of the 12th International World Wide
Web Conference, Budapest, Hungary, May 2003.

[Gua98] Nicola Guarino. Formal Ontology and Information Systems. In Proceed-
ings of FOIS’98, pages 3 – 15, Trento, Italy, June 1998.

[Hef03] Jeff Heflin. Web Ontology Language (OWL) Use Cases and Require-
ments. W3C Working Draft, March 2003.

[PSHH03] Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL Web
Ontology Language Semantics and Abstract Syntax. W3C Working
Draft, March 2003.

[RSSS94] Raghu Ramakrishnan, Divesh Srivastava, S. Sudarshan, and Praveen Se-
shadri. The CORAL Deductive System. VLDB Journal: Very Large Data
Bases, 3(2):161 – 210, 1994.

[Spe91] Günther Specht. LOLA, LDL, NAIL!, RDL, ADITI and STARDUST: A
Comparision of Deductive Database Systems. Technical report, Institut
für Informatik, TU München, 1991.

[vH02] Frank van Harmelen. The Complexity of the Web Ontology Language.
IEEE Intelligent Systems, 17(2):71 – 72, March/April 2002.

[vHHH+03] Frank von Harmelen, Jim Hender, Ian Horrocks, Deborah L. McGuiness,
Peter F. Patel-Schneider, and Lynn A. Stein. OWL Web Ontology Lan-
guage Reference. W3C Working Draft, March 2003.

