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Abstract

With the advent of the world wide web the number of freely available text
documents has increased considerably in the last years. As one of the imme-
diate results, it has become easier to find sources that serve as the basis for
plagiarism. On the other side, it has become harder for detection tools to
automatically expose plagiarism due to the huge amount of possible origins.
Moreover, sources may even not be digitally available, resulting in an unsolv-
able problem for such tools, whereas experienced human readers might find
suspicious passages based on an intuitive style analysis.

In this thesis, intrinsic plagiarism detection algorithms are proposed which
operate on the suspicious document only and circumvent the problem of in-
corporating external data. The main idea is thereby to analyze the style of
authors in terms of the grammar that is used to formulate sentences, and to
expose significantly outstanding text fragments according to the syntax, which
is represented by grammar trees. By using a similar style analysis, the idea
has also been applied to the problem of automatically assigning authors to
unseen text documents. Moreover, it is shown that grammar also serves as a
distinguishing feature to profile an author, namely to predict his/her gender
and age. Reusing all previous analyses and results, the idea has finally been
adapted in order to be used to automatically detect different authorships in a
collaboratively written document.






Zusammenfassung

Die Anzahl an frei verfligbaren Textdokumenten ist in den letzten Jahren auf-
grund des enormen Aufschwungs des Internets erheblich gestiegen. Eine der
Konsequenzen ist, dass Quellen fiir mogliche Plagiate leicht gefunden werden
konnen, wahrend es auf der anderen Seite fiir automatische Erkennungstools
aufgrund der groflen Datenmengen immer schwieriger wird, Plagiate zu erken-
nen. Zudem sind Quellen oft nicht in digitaler Form vorhanden, was fiir Tools,
die auf Vergleiche mit bekannten Dokumenten basieren, ein unlésbares Prob-
lem darstellt. Andererseits konnen geiibte menschliche Leser verdéchtige Pas-
sagen oft iiber eine intuitive Stilanalyse ausfindig machen.

In dieser Arbeit werden verschiedene Algorithmen zur intrinsischen Plagiat-
serkennung entwickelt, welche ausschliefflich das zu priifende Dokument unter-
suchen und so das Problem umgehen, externe Daten heranziehen zu miissen.
Dabei besteht die Grundidee darin, den Schreibstil von Autoren auf Basis der
von ihnen verwendeten Grammatik zur Formulierung von Sétzen zu unter-
suchen, und diese Information zu nutzen, um syntaktisch auffallige Textfrag-
mente zu identifizieren. Unter Verwendung einer dhnlichen Analyse wird diese
Idee auch auf das Problem, Textdokumente automatisch Autoren zuzuord-
nen, angewendet. Dariiber hinaus wird gezeigt, dass die verwendete Gram-
matik auch ein unterscheidbares Kriterium darstellt, um Informationen wie
das Geschlecht und das Alter des Verfassers abzuschétzen. Schlussendlich
werden die vorherigen Analysen und Resultate verwendet und so adaptiert,
dass Anteile von verschiedene Autoren in einem gemeinschaftlich verfassten
Text automatisch erkannt werden kénnen.
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CHAPTER 1

Introduction

1.1. Motivation

With the advent of electronic data processing in combination with the global
world wide web the amount of publicly available text documents is huge and in-
creasing daily. Besides the existence of online libraries like Project Gutenberg
[180] or Open Library [179] that offer free downloads of millions of e-books,
textual content is also spread massively through social media applications.
Here, users frequently use the numerous possibilities to compose and share
text in various ways. Considering current statistics [171] estimating 70 billion
pieces of content shared via Facebook or 190 million short messages posted on
Twitter every day, the amount of shared textual information is huge.

Where the authors of text shared through social media like status posts or
web blogs are usually known and easily classifiable, the usage and publishing
of text becomes problematic as soon as copyright issues are involved. Es-
pecially in academia, recent events show that textual content is frequently
copied, modified and claimed to be an author’s own work without appropriate
citation, despite the fact that it clearly isn’t. Such cases of plagiarism can
be detected with relatively few effort if text fragments are taken from easily
available and popular sources like Wikipedia. In those situations simple algo-
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rithms can be used which try to find plagiarism by basically just comparing
a document against a large internal text document database. By utilizing ap-
proximate string matching algorithms like the Levenshtein Distance [104] or
longest common subsequence algorithms [17], even copied and slightly modi-
fied text can be detected to a certain extent.

On the other side, an automatic detection becomes substantially more difficult
when text is vastly rearranged or when the source document is not available.
In latter cases an internal analysis of the document regarding the writing style
is indispensable. For humans it is often easy to detect style shifts within a
text block, but for computational algorithms it remains a hard problem. As an
example, advisors of student works like seminar papers or bachelor theses in
an academic area repeatedly find plagiarized sequences of sentences, because
they seem odd.

Such human estimations are mostly based on the intuitive detection of changes
in the writing style, including measures like the usage or richness of vocab-
ulary, the (average) length of sentences or the complexity of the grammar
used. The computer-based analysis of such style shifts considering many stylis-
tic characterstics in order to expose plagiarism in text documents is usually
called intrinsic plagiarism detection in scientific communities. This thesis con-
tributes to this research field and introduces different algorithms based on a
novel style feature that is able to significantly distinguish between the writ-
ing styles of different authors, achieving promising results. In particular, the
grammar syntax of writers is analyzed and utilized in the fields of intrinsic pla-
giarism detection, authorship attribution, author profiling and decomposition
of multi-author documents.

1.2. Research Objectives

The main idea of this thesis is based on the assumption that different authors
have different writing styles in terms of the grammar they use. Therefore the
sentences of documents are analyzed by their grammar, i.e., by inspecting plain
POS tags or full parse trees. The information gained is then consequently ap-
plied to different research fields, whereby the basic question for each category
is whether a grammar analysis using the algorithms presented in this thesis
is sufficient to (a) represent a standalone approach or to (b) enhance existing
state-of-the-art algorithms.



1.2. Research Objectives

Intrinsic Plagiarism Detection

According to its definition, the main goal of intrinsic plagiarism detection
is to find plagiarism in text documents by inspecting a suspicious document
only. In contrast to external detection algorithms which make use of large
databases or even internet search engines for extensive comparisons, intrinsic
approaches are supposed to detect plagiarism by applying style analysis and
finding irregular patterns.

The research question discussed in this thesis is as follows: Can solely grammar
analysis be used to identify plagiarized passages in a suspicious document?

Authorship Attribution

The objective of traditional authorship attribution is to assign known authors
to previously unseen documents. Usually, several text documents for each
candidate author are known, from which the algorithms have to learn in order
to be able to make correct predictions. If the restriction is given to assign one
of the candidates to be the author of the document in question, the problem
is called closed-class attribution. On the other hand, if additionally a "non-
of-them” answer is allowed, this (more difficult) problem is usually referred to
as open-class.

In this thesis the following question is evaluated: Can solely grammar anal-
ysis be used to learn from text samples and to correctly closed-class predict
authorships of unseen documents?

Automatic Author Profiling

In contrast to the traditional authorship attribution problem, the task of au-
tomated author profiling is not to assign authorships to documents, but to
predict meta information about the author of an unseen document. Such
meta information includes gender, age or the geographic origin of the author,
but also psychological classifications.

This thesis investigates on the question whether the grammar of authors can
be used to reliably determine their gender and age.

Multi-Author Decomposition

Finally, the discrimination of authorships of a multi-author document is a
task which is closely related to intrinsic plagiarism detection, and thus tries
to separate text passages that are written by different authors. The main
difference is that - in distinction to plagiarism detection - several authors may
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have collaborated on a document, and that the amount of contribution may
be equally distributed per author. Consequently, the assumption that a main
author exists cannot be used, and state-of-the-art clustering techniques have
to be utilized.

Using a similar grammar analysis like in the other subproblems, the following
question is evaluated: Is the grammar of authors sufficient in order to be
used as input for modern clustering algorithms, so that authorships can be
descriminated in a document and correct author clusters can be built?

1.3. Published Work

Throughout the PhD studies several works have been published in interna-
tional, peer-reviewed scientific conference proceedings. Each publication de-
scribes a part of this thesis and is used as a basis for the respective chapter.

In particular, the following papers have been published:

First-Author Conference Papers

e M. Tschuggnall and G. Specht. Plag-Inn: Intrinsic Plagiarism Detec-
tion Using Grammar Trees. In Proceedings of the 17th International
Conference on Application of Natural Language to Information Systems
(NLDB), Groningen, The Netherlands, June 2012, volume 7337 of LNCS,
Springer, pages 284-289. [185]

e M. Tschuggnall and G. Specht. Detecting Plagiarism in Text Docu-
ments Through Grammar-Analysis of Authors. In Proceedings of the
15.  GI-Fachtagung Datenbanksysteme fiir Business, Technologie und
Web (BTW), Magdeburg, Germany, March 2013, volume 214 of LNI,
pages 241-259. [187]

e M. Tschuggnall and G. Specht. Countering Plagiarism by Exposing Ir-
reqularities in Authors’ Grammar. In Proceedings of the European Intel-
ligence and Security Informatics Conference (EISIC), Uppsala, Sweden,
August 2013, IEEE, pages 15-22. [186]

e M. Tschuggnall and G. Specht. Using Grammar-Profiles to Intrinsi-
cally Expose Plagiarism in Text Documents. In Proceedings of the 18th
International Conference on Application of Natural Language to Infor-
mation Systems (NLDB), Salford, UK, June 2013, volume 7934 of LNCS,
Springer, pages 297-302. [18§]
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e M. Tschuggnall and G. Specht. Enhancing Authorship Attribution by
Utilizing Syntax Tree Profiles. In Proceedings of the 14th Conference
of the European Chapter of the Association for Computational Linguis-
tics (EACL), Gothenburg, Sweden, April 2014, volume 2: Short Papers,
Association for Computational Linguistics, pages 195-199. [190]

e M. Tschuggnall and G. Specht. What Grammar Tells About Gender
and Age of Authors. In Proceedings of the 4th International Conference
on Advances in Information Mining and Management (IMMM), Paris,
France, July 2014, pages 30-35. [191]

Book Contributions

e M. Tschuggnall. Plag-Inn: Uncovering Plagiarism by Eramining Au-
thor’s Grammar Syntaz. In M. Barden and A. Ostermann, editors, Sci-
entific Computing@uibk. Innsbruck University Press, 2013. [184]

Workshop Contributions

e M. Tschuggnall and G. Specht. Automatic Decomposition of Multi-
Author Documents Using Grammar Analysis. In Proceedings of the 26th
GI-Workshop on Grundlagen von Datenbanken (GvD), Bozen, Italy, Oc-
tober 2014. [189]

Other Contributions

The following publication is a result of the author’s Master thesis in the field
of recommender systems:

o W. Gassler, E. Zangerle, M. Tschuggnall, and G. Specht. SnoopyDB:
Narrowing the Gap between Structured and Unstructured Information
using Recommendations. In Proceedings of the 21st ACM Conference
on Hypertext and Hypermedia (HT), Toronto, Ontario, Canada, June
2010, pages 271-272. [51]

1.4. Thesis Outline

The remainder of this thesis is structured as follows:

As one of the main contributions of this work, Chapter 2 discusses the uti-
lization of grammar structures to intrinsically detect plagiarism in text docu-
ments. After showing the basics used for the grammar analysis in Section 2.2
and Section 2.3, respectively, the elementary Plag-Inn algorithm (Section 2.4)
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as well as the variants POS-Plag-Inn (Section 2.5) and PQ-Plag-Inn (Section
2.6) are explained and evaluated in detail.

The application of the grammar analysis to the authorship attribution problem
is shown in Chapter 3, whereas the application to the automatic profiling
of gender and age is discussed in Chapter 4. Finally, Chapter 5 explains
the automatic clustering of text paragraphs by using the grammar style of
authors.

Related work of all research objectives, i.e., intrinsic plagiarism detection,
authorship attribution, author profiling and clustering is described in Chapter
6. Finally, Chapter 7 concludes the contributions of this thesis and further
discusses future work.



CHAPTER 2

Intrinsic Plagiarism Detection

2.1. Introduction

Today more and more text documents are made publicly available through
large text collections or literary databases. As recent events show, the detec-
tion of plagiarism in such systems becomes considerably more important as
it is very easy for a plagiarist to find an appropriate text fragment that can
be copied, where on the other side it becomes increasingly harder to correctly
identify plagiarized sections due to the huge amount of possible sources. In
this thesis novel approaches to detect plagiarism in text documents are pre-
sented, that circumvent large data comparisons by performing intrinsic data
analysis, i.e., analysis of grammar syntax.

The two main approaches for identifying plagiarism in text documents are
known as ezternal and intrinsic algorithms [142], which are illustrated in Fig-
ure 6.2. External algorithms compare a suspicious document against a given,
unrestricted set of documents obtained from multiple databases created from
sources like open libraries, freely available published academic papers or the
world wide web in general, often by incorporating search engines. Basically, the
suspicious document is split into several segments, whereby every segment is
then compared against every possible document in the data set. Often applied
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Document
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D D D Document -
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(a) External Plagiarism Detection (b) Intrinsic Plagiarism Detection

Figure 2.1.: Difference Between External and Intrinsic Plagiarism Detection.

techniques used in external approaches include n-grams [131], word-n-grams
[14] comparisons or standard IR techniques like common subsequences [61].
Moreover, machine learning techniques [15] are also heavily utilized, whereby
the main scientific contribution is to present new features or to intelligently
select existing ones.

On the other side, intrinsic approaches are allowed to inspect the suspicious
document only and have to comprise the writing style of an author in some
way. The challenging task is thereby to find irregular text sequences within
the document based on several measures. Among others, features like the
frequency of words from predefined word-classes (vocabulary) [132], complex-
ity analysis [157] or n-grams [169, 87] as well are used to find plagiarized
sections.

Although the majority of external algorithms perform significantly better than
intrinsic algorithms by using the advantage of a huge data set gained from the
Internet, intrinsic methods are useful when such a data set is not available.
For example, in scientific documents that use information mainly from books
which are not digitally available, a proof of authenticity is nearly impossible
for a computer system to make. Moreover, authors may modify the source text
in such a way that even advanced, fault-tolerant text comparison algorithms
cannot detect similarities. In addition, intrinsic approaches can be used as a
preceding technique to help reducing the set of source documents for CPU-
and/or memory-intensive external procedures.
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As a reference for all evaluation results shown in this chapter and to strengthen
the difficulty of the problem, the detection rates (F-scores) of state-of-the-art
intrinsic plagiarism systems should be considered, which range from about
8% up to 32% only, depending on the test data. Like it is shown later in
this chapter, these detection rates could be met and even outperformed by
the algorithms developed in this thesis. On the other hand and as stated
before, external algorithms perform significantly better and achieve detection
rates of up to about 80%. A more detailed summary on the algorithms and
performances of related work is given in Section 6.1.

The rest of this chapter is organized as follows: At first, Section 2.2 gives an
overview of the grammar syntax used by authors, and subsequently Section
2.3 recaps the concept of pg-grams and pg-gram indices, as they are used
extensively throughout this thesis to analyze grammar. The intrinsic plagia-
rism detection algorithm Plag-Inn using the latter by structurally comparing
all sentences of a document is described in Section 2.4. The POS-Plag-Inn
algorithm shown in Section 2.5 is also based on a sentence-by-sentence com-
parison, but uses POS tags only, which are compared by utilizing dynamic
programming algorithms. Finally, in Section 2.6 the PQ-Plaglnn algorithm is
explained, which also investigates on structural differences of grammar trees
by comparing pg-gram profiles of sentence windows.

2.2. The Grammar Syntax of Authors

Every natural language is based on a set of vocabulary and a set of grammar
rules that allow its users to build sentences, whereby both numbers differ
for each language. For example, the Oxford English Dictionary lists about
170,000 distinct words that are currently used [133], whereas the German
Duden estimates the German vocabulary to contain 300,000 - 500,000 distinct
words [19]. More importantly, the number of actually used words is of interest
when formulating sentences. Here, a recent study! incorporating more than
two million native English speakers found out that the average vocabulary size
of an adult ranges between 20,000 and 35,000 words.

2.2.1. Grammar Rules

As a result of the evolution of a language like English for several thousand
years [60], it provides numerous valid possibilities to transmit a single message.
First, a sentence can be reformulated by exchanging the vocabulary without
changing the syntax. For example, the sentences

!Test Your Vocab - How Many Words Do You Know?, http://testyourvocab.com


http://testyourvocab.com
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(i) He is feeling sick because his back is aching.

and

(ii) He is being ill as his rear is hurting.

deliver the same meaning, but the latter only uses 44% of the original vocab-
ulary.

Second, an at least equally powerful way to reconstruct a sentence is given by
the set of rules the grammar of a natural language defines. For example, a
simplified English grammar could look like follows?:
sentence — nounphrase verbphrase
nounphrase — nounexpression | determiner nounexpression
nounexpression — noun | adjective nounexpression
verbphrase — verb | verb nounphrase
In combination with the lexical (terminal) rules
determiner — a | the
noun — cat | dog

verb — chases
adjective — big | brown | lazy | white

the sentence

(iii) The big white cat chases a lazy brown dog.

can be built by systematically applying the given rewriting rules:
sentence

— nounphrase verbphrase
— determiner nounexpression verbphrase

2example taken from http://www.amzi.com/AdventureInProlog/al5nlang.php, visited March
2014

10
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The nounexpression verbphrase

The adjective nounexpression verbphrase

The big nounexpression verbphrase

The big adjective nounexpression verbphrase

The big while noun verbphrase

The big white cat verbphrase

The big white cat verb nounphrase

The big white cat chases nounphrase

The big white cat chases determiner nounexpression
The big white cat chases a nounexpression

The big white cat chases a adjective nounexpression
The big white cat chases a lazy nounexpression

The big white cat chases a lazy adjective nounexpression
The big white cat chases a lazy brown nounexpression
The big white cat chases a lazy brown noun

The big white cat chases a lazy brown dog

N I 2 A I 2 2 I A

Being still a research topic, scientist discuss whether - and if yes, where -
the grammar of natural languages can be placed in the four-level Chomsky
hierarchy [31]: (Type 0) recursively enumerable, (Type 1) context sensitive,
(Type 2) context free or (Type 3) regular grammars. While the authors in
[99] claim that natural languages are of Type 3, recent research concludes that
they can’t be fitted into any of the Chomsky types [76].

2.2.2. Parse Trees

A more readable option to visualize the grammar construction of a sentence
is by using grammar trees. Figure 2.2 shows the syntax tree for sentence (iii)
according to the previously defined grammar. In natural language processing
(NLP) applications [32] such trees are usually referred to as (full) parse trees
or syntax trees, and the nodes are normally labeled with part-of-speech (POS)
tags which refer to Penn Treebank tags [110]. An excerpt of important tags
including examples® is shown in Table 2.1, whereas the complete list of Penn
Treebank tags can be seen in the Appendix in Section A.1.

Obviously a natural language like English consists of much more grammar
rules than presented in the example earlier, which are recognized by modern
parsers. Thus, by utilizing a state-of-the-art parser like the Stanford Parser
[90], the correct parse tree using Penn Treebank tags is shown in Figure 2.3.

3examples taken from http://www.clips.ua.ac.be/pages/mbsp-tags, visited March 2014

11
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sentence

/\

nounphrase verbphrase\
nounexpression nounphrase
nounexpressi{ nounexpr(\eiion
nounexpression nounexprei,ion
/nounexTression
determiner adjective adjective noun velrb deterriner adjerive adjei:tive nolun
The big white cat chases a lazy brown dog
Figure 2.2.: Grammar Tree of Sentence (iii).
Tag | Description Example
CcC conjunction, coordinating and, or, but
DT determiner the, a, these
IN conjunction, subordinating or preposition | of, on, before, unless
JJ adjective nice, easy
JJS | adjective, superlative nicest, easiest
NP noun phrase the strange bird
NN noun, singular or mass tiger, chair, laughter
PRP | pronoun, personal me, you, it
RB adverb extremely, loudly, hard
RP adverb, particle about, off, up
VB verb, base form think
VBZ | verb, 3rd person singular present she thinks
VP verb phrase was looking
WP | wh-pronoun, personal what, who, whom

Table 2.1.: Excerpt of Penn Treebank Tags.

T

i /\VP

The

big white cat chases a

lazy

/T

]

brown dog

Figure 2.3.: Correct Parse Tree of Sentence (iii) using POS tags.
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2.2. The Grammar Syntax of Authors

NN VBD NP PP NP VP PP NP
DT NN IN NP NN  VBD NP IN DT NN
DT NN DT NN
John saw a man  with a mirror John saw a man with a mirror
(a) (b)

Figure 2.4.: Ambiguous Parse Trees for Sentence (iv).

2.2.3. Ambiguity

In the case of the example stated earlier, the parse tree for sentence (iii) is
distinct as there is only one possible derivation. On the other hand there exist
many sentences which have more than one correct parse trees. In particular
this occurs when a sentence has an ambiguous meaning. For example, the
sentence

(iv) John saw a man with a mirror.

can be read in two ways: (a) John saw a man, and the man holds/has a mirror.
(b) John saw a man, and he saw him by using a mirror. Accordingly, the two
possible parse trees are shown in Figure 2.4. Another interesting example has
been found in [162], where a morpho-syntactical analysis of written old Hebrew
revealed that most of the sentences in the Old Testament have various possible
parse trees, which makes the interpretation very interesting for linguists and
theologists.

Basically, ambiguities can be differentiated into global and local ambiguities
[123], respectively, where ”global ambiguity impacts the whole sentence”, and
”local ambiguity is limited to one or more pieces of a sentence. In case of the
example shown in Figure 2.4, where multiple parse trees for a sentence exist,
the type is called structural ambiguity, i.e. where different interpretations of
a sentence can be made by varying the syntax. Additionally, a word sense
ambiguity occurs when one or more of the terminal nodes of a parse tree, i.e.
words, can be understood in different ways. An example for this type would
be the word cards in the sentence ” She has cards in her pocket”, which could
be seen like ”credit cards” or ”playing cards” [123].

13



2. Intrinsic Plagiarism Detection

®
stem
@

/ N
o @ @

base

Figure 2.5.: Structure of a pg-gram Consisting of Stem p = 2 and Base g = 3.

Although ambiguities are important to consider, especially for linguists, the
work described in this thesis is neglecting multiple parse trees for a single
sentence. Instead, the most probable grammar tree that is estimated by the
parser is chosen as a representative structure.

2.3. Preliminaries: pg-grams

2.3.1. The pg-gram index

Similar to n-grams which represent subparts of given length n of a string,
Augsten et al. proposed pg-grams which extract substructures of an ordered,
labeled tree [12, 69]. The size of a pg-gram is determined by a stem (p) and
a base (q) like it is shown in Figure 2.5. Thereby p defines how much nodes
are included vertically, and ¢ defines the number of nodes to be considered
horizontally.

For example, a valid pg-gram with p = 2 and ¢ = 3 starting from the root
of tree T, illustrated in Figure 2.6 would be the subtree (A)-(B)-(D,E,F),
which can be serialized as [A-B-D-E-F].

The pg-gram index then consists of all possible pg-grams? of a tree. In order
to obtain all pg-grams, the base is shifted left and right additionally: If then
less than p nodes exist horizontally, the corresponding place in the pg-gram is
filled with *, indicating a missing node. Applying this idea to tree Ty, also the
following pg-grams - resulting from horizontal shifts - have to be considered:

“For simplicity reasons, the term ’pg-gram’ denotes the serialization of a pg-gram in the
following.

14



2.3. Preliminaries: pqg-grams

Figure 2.6.: Two Examples of Ordered, Labeled Trees.

e A-B-*-*-D (base shifted left by two)
e A-B-*-D-E (base shifted left by one)
e A-B-E-F-* (base shifted right by one)
e A-B-F-*-* (base shifted right by two)

Additionally, if the height of a node is less than p+1, i.e. a node has no children
to perform horizontal shifts on, the corresponding missing children are also
treated as regular missing nodes, resulting in ¢ gap nodes (*). Consequently,
all leaves have the pg-gram pattern [parent-leaf-*x—*-*-*]. Finally, also an
imaginary node connected to the root has to be calculated. Thus, also the
pg-gram [*-A-*-B-C] is valid.

The pg-gram index is then a bag of all valid pg-grams of a tree®, which includes
all possible valid extractions for each starting node. Because the index is a
bag, all multiple occurrences of the same pq-grams are also present multiple
times in the index. The size of a pg-gram index is O(n) for a tree with n
nodes [12].

As an example, the complete pg-gram index Z of tree T, using p =2 and ¢ =3
is as follows:

I(Ta) =4
*A**B, *A*BC, *ABC*, *ACx**, (root node is *)
AB*xD, AB*DE, ABDEF, ABEF*, ABFx*x, (root node is A)
AC*xG, AC*G*, ACG*x, (root node is A)
BD* , BE*** , BF**% (root node is B)

®Originally the serialization of each pg-gram is hashed and not stored as string label
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2. Intrinsic Plagiarism Detection

CG**H, CG*H*, CGHxx, (root node is C)
GH*** (root node is G)

2.3.2. The pqg-gram distance

An often used concept to compare trees is the tree edit distance [20], which
calculates the minimum cost to transform a tree into another, different tree.
Thereby the following edit operations are allowed: (1.) insertion (2.) deletion
and (3.) renaming. For each operation a cost has to be defined, and the
calculation is either based on a unit cost model (no differences between leaves
and non-leaves) or a fanout model (changes on leaves have small costs, but non-
leaf changes cost proportional to the node fanout). A major disadvantage of
the tree edit distance is that its computation is very costly: its complexities are
O(n?) for runtime and O(n?) for needed space, respectively [20]. Additionally
an appropriate cost model has to be found in order to be sensitive to structure
changes.

(T) Z(T)

Figure 2.7.: Visualization of the Components of the pg-gram Distance®.

As a distance between trees is needed massively for algorithms described in
this thesis, the more efficient pg-gram distance is used, which has a runtime
complexity of O(n-log(n)) [12]. Moreover, it is implicitly sensitive to structure
changes, which is important for the algorithms. More precisely, the pg-gram
distance is a lower bound of the fanout weighted tree edit distance and is
formally defined as

distpq(Tl,TQ) = |I(T1) LﬂI(Tg)l -2 |I(T1) mZ(T2)|

whereby w and m correspond to the union and intersection of bags (multi-
sets), i.e., multiple occurrences of an item are also added or subtracted multiple

Sreused from presentation slides of a talk about pg-grams by Prof. Augsten in Innsbruck,
Austria, 2.5.2011
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2.3. Preliminaries: pqg-grams

times, respectively. A visualization of the components of the distance is shown
in Figure 2.7. As an example, the pg-gram distance between trees T, and T
can be calculated as follows:

Z(T,) = {*A**B, *A*BC, *ABC*, *AC** AB*xD, AB*DE, ABDEF, ABEF*, ABF**, AC**G,
AC*G#*, ACG**, BD*x**, BE+** BF*¥* CGrxH, CG*H*, CGH**, GH*x* }

Z(Tp) = {*A*xxH, *AxHC, * AHC*, xAC** AH**B, AH*B*, AHB**, AC**G, ACkG*, ACG**,
HB**D, HB*DE, HBDE*, HBE**, CG**F, CG*FH, CGFH*, CGHx**, BD#*, BE#xx, GF*kk, GHsk** }

|Z(Tw)| = 19 number of pq-grams in Z(7T,)

|Z(T3)| = 22 number of pq-grams in Z(7})
|Z(T,) wZ(Tp)| = 19+ 22 multi-set union of the two indices
|Z(T,) R Z(Ty)| =7 multi-set intersection of the two indices

(the number of pg-grams occurring in both indices)

Finally, the pg-gram distance between the trees T, and T is:

distP (T, Ty) = |T(To) w I(Ty)| - 2+ |T(To) @ I(Ty)| = 19+ 22 = 2.7 = 27

17



2. Intrinsic Plagiarism Detection

2.4. The Plag-Inn Algorithm’
2.4.1. Algorithm

The Plag-Inn algorithm® represents the basis for all plagiarism detection al-
gorithms presented in this thesis. Being an intrinsic detection approach, it at-
tempts to expose plagiarism within a text document based on stylistic changes.
Based on the assumption that different authors use different grammar rules to
build their sentences, it compares the grammar of each sentence against the
grammar of each other sentence and tries to find suspicious ones.

For example, the sentence’

(S1) The strongest rain ever recorded in India shut down the financial hub of
Mumbas, officials said today.

could also be formulated as

(S2) Today, officials said that the strongest Indian rain which was ever
recorded forced Mumbai’s financial hub to shut down.

which is semantically equivalent but differs significantly according to its syn-
tax. The grammar trees produced by the two sentences are shown in Figure
2.8. It can be seen that there is a significant difference in the building structure
of each sentence. The main idea of the approach is to quantify those differ-
ences and to find outstanding sentences or paragraphs which are assumed to
have a different author and thus may be plagiarized. In order to analyze a
sentence, pg-grams and pg-gram distances are used.

Given a text document to analyze, the ”suspicious” document, the Plag-Inn
algorithm consists of five basic steps:

1. Split the document into single sentences.

2. Compute full parse trees for each sentence.

"This section is based on and contentual partly reused from the paper: M. Tschuggnall and
G. Specht. Detecting Plagiarism in Text Documents through Grammar-Analysis of Authors.
In Proceedings of the 15. GI-Fachtagung Datenbanksysteme fiir Business, Technologie und
Weg (BTW), Magdeburg, Germany, March 2013, volume 214 of LNI, pages 241-259. [187]

8Plag-Inn stands for Intrinsic Plagiarism Detection Innsbruck

9example taken and modified from the Stanford Parser website [181]
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2.4. The Plag-Inn Algorithm

NP VP
/ \ VBD // \N Nl‘\lS VBD/ \
/7p\ /VP\ (shut) PTT / \ (officials) (said)
DT s NN ADVE VBN RP NN

(The) (strongest) (rain) (recorded) /\ (down) / \ (today)
DT JJ
(ever) (|n) (the) (financial) (hub) (|n)
NNP NNP
(India) (Mumbai)
Sy
/ S\
/NF' / N‘P /P
NN NNS VBD
(Today) (officials)  (said) /SBAR
IN s

(that)

/ \ VBD / \\
/ \ / \ (forced) / \\
DT JJS JJ NN NN VP
(the) (strongest) (Indian)  (rain) / \ fmanmal) (hub) / \
\ .

WDT VP NNP POS
(which)/ \(Mumbai) ('s) (to) / \
VBD
(was) AD‘VP V‘P (shu Y PHT
RB VBN RP
(ever) (recorded) (down)
(So)

Figure 2.8.: Grammar Trees Resulting From Sentence (S1) and (S2).
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2. Intrinsic Plagiarism Detection

3. Calculate the pg-gram distance between every distinct pair of sentences
and store the result into a distance matrix.

4. Fit the distances into a Gaussian normal distribution and mark signifi-
cantly outstanding sentences as plagiarized.

5. Refine the final prediction by grouping/ungrouping text passages and
selecting/deselecting individual sentences.

In the following each step is explained in detail.

Splitting the text into single sentences

At first the document is preprocessed by eliminating unnecessary whitespaces
or non-parsable characters. For example, many data sets often are based on
novels and articles of various authors, whereby frequently OCR text recog-
nition is used due to the lack of digital data. Additionally, such documents
contain problem sources like chapter numbers and titles or incorrectly parsed
picture frames that result in non-alphanumeric characters.

The cleaning step is not crucial to the algorithm, but supports the subsequent
task of splitting the document into single sentences, which is done using Sen-
tence Boundary Detection (SBD) algorithms [175]. The simple sounding task
of recognizing sentence ends has been a research problem for many years, as
the intuitive splitting by fullstops is not sufficient, like the following example!'®
demonstrates:

”Prof. Dr. Pierre Vinken, a 61 year old U.S. citizen, will join the board as a
nonezxecutive director on Nov. 29. Mr. Vinken is chairman of Elsevier N.V.,
the Dutch publishing group.”

Many approaches have achieved accuracies of over 98% already before the 20th
century, e.g. [151], whereby recent algorithms even report an error rate of less
than 0.25%, e.g. [56]. As the correct splitting of sentences is essential to all
approaches throughout this thesis, state-of-the-art SBD algorithms have to
be utilized. Currently, the open source tool OpenNLP'! is used to meet this
requirement.

Yexample taken and modified from http://blog.dpdearing.com/2011/05/opennlp-1-5-0-basics-
sentence-detection-and-tokenizing/, visited March 2014

" Apache OpenNLP, http://incubator.apache.org/opennlp, visited March 2014
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2.4. The Plag-Inn Algorithm

Computing full parse trees

Using the Stanford Parser [90], a syntax tree is computed for each sentence.
Like it is described in Section 2.2, each node of the tree is labelled with a
Penn Treebank tag, which for example correspond to word-level classifiers like
nouns (NN) or phrase-level classifiers like verb phrases (VP). Since the Plag-
Inn algorithm investigates only the grammatical structure, the actual words
(vocabulary) of a sentence are irrelevant. Consequently, the terminals of each
tree, i.e., the words, are dismissed.

Calculating pg-gram distances

Having a grammar tree for all n sentences of the text document, the difference
between every distinct pair of sentences is stored into a triangular distance
matrix D,,:

dig dip dig dy 0 dip dig - dip

dip da2 da3z - dan * 0 dag - dop
D, =1d3 dg3 d33 dsp|=|* = 0 - dsn

din, dop d3’n dn.n * * * 0

Each d; j entry corresponds to the distance of the grammar trees between sen-
tence ¢ and j, whereby d; ; = d; ;. The distance itself is calculated by computing
the pg-gram distance of the respective pg-gram indices of the sentences. As
the distance between sentence i and j is the same as the distance between
sentence j and ¢, the resulting distance matrix is triangular. Hence, filling
D,, requires only (Z) = @ distance calculations, where n corresponds to
the total number of sentences of the document. Nevertheless, by performing
experiments it could be observed that the calculation and storage of pg-gram
distances make up only a small proportion of the global execution time, and
that the major effort is needed of the syntactic parsing of sentences.

The assumption followed by this approach is that individual (groups of) sen-
tences have significantly higher distances to all other sentences in the doc-
ument, and that such sentences can be exposed to be plagiarized. As an
example, the matrix
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indicates that sentence 3 may have been plagiarized as its distances are signifi-
cantly higher. A visualization of a distance matrix of a document consisting of
1500 sentences (D1500) and containing sentences with significantly higher dis-
tances is depicted in Figure 2.9, whereby the triangular character of the matrix
is ignored in this case for better visibility. The z-axis represents the pg-gram
distance between the sentences on the x- and y-axis, and it can be seen that
there are significant differences in the style of sentences around number 100
and 800, respectively. In contrast, a 3D plot of a smaller, 200 sentences long
document which contains no suspicious sections is illustrated in Figure 2.10.

600

pg-gram distance

200

100 |

500
200 |-l

300 .,

1500

i

lil
A

1500

> c
s00 sente"’

Figure 2.9.: Plag-Inn: Distance Matrix of a Large Document With 1500 Sen-
tences Containing Suspicious Sections.
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pg-gram distance

100

Figure 2.10.: Plag-Inn: Distance Matrix of a Short Document With 100 Sen-
tences Containing no Suspicious Sections.

Calculating average distances, Gaussian normal distribution and
suspicious sentences

Significant differences which are already visible to a human eye in the dis-
tance matrix plot are now examined through statistical methods. To find
significantly outstanding sentences, i.e., sentences that might have been pla-
giarized, the median distance for each row in D, is calculated. The resulting
vector

J: (d717d727d737 ...7d7n)

is then fitted to a Gaussian normal distribution, which estimates the mean
value p and the standard deviation o. The two Gaussian values can thereby
be interpreted as a common variation of how the author of the document
builds his sentences grammatically.

Finally, all sentences that have a higher distance than a predefined threshold
dsusp are marked as suspicious. The definition and optimization of d4,s, (Where
dsusp > p+0) is shown in Section 2.4.3. Figure 2.11 depicts the mean distances
resulting from averaging the distances for each sentence in the distance matrix
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Figure 2.11.: Plag-Inn: Average Distances Including the Gaussian-Fit Values
@ and o.

of the example shown in Figure 2.9. After fitting the data to a Gaussian normal
distribution, the resulting mean p and standard deviation o are marked in the
plot. The threshold dsysp that splits ordinary from suspicious sentences can
also be seen, and all sentences exceeding this threshold are marked.

Making the final prediction

The last step of the algorithm is to smooth the results coming from the mean
distances and the Gaussian fit algorithm. At first, suspicious sentences that are
close together with respect to their occurrence in the document are grouped
into paragraphs. Secondly, standalone suspicious sentences might be dropped
because personal experiences showed that it is unlikely in many cases that just
one sentence has been plagiarized. The algorithm incorporating these ideas is
explained in detail in the following section.

2.4.2. Sentence Selection Algorithm

The result of steps 1-4 of the Plag-Inn algorithm is a vector d of size n which
holds the average pg-gram distances of each sentence to all other sentences.
After fitting this vector to a Gaussian normal distribution, all sentences having
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2.4. The Plag-Inn Algorithm

a higher average distance than a predefined threshold ds,sp are marked as
suspicious. This step is already the first step as can be seen in Algorithm 1.

The main objective of the further procedure of the sentence-selection algorithm
is to group together sentences into plagiarized paragraphs and to eliminate
standalone suspicious sentences. As the Plag-Inn algorithm is based on the
grammatical structure of sentences, short instances like ”I like tennis.” or ”At
what time?” carry too less (grammar) information and are most often not
marked as suspicious as their building structure is too simple. Nevertheless,
such sentences may be part of a plagiarized section and should therefore be
detected. For example, if eight sentences in a row have found to be suspicious
except one in the middle, it is intuitively very likely that it should be marked
as suspicious as well.

To group together sentences, the procedure shown in Algorithm 1 traverses
all sentences in sequential order. If it finds a sentence that is marked as sus-
picious, it first creates a new plagiarized section and adds this sentence. As
long as ongoing suspicious sentences are found they are added to this sec-
tion. When a sentence is not suspicious, the global idea is to use a lookahead
variable (curLookahead) to step over non-suspicious sentences and to check if
there is a suspicious sentence within the lookahead-range. If a sentence is then
found to be suspicious within a predefined maximum (mazLookahead), this
sentence and all non-suspicious sentences in between are added to the plagia-
rized section, and the lookahead variable is reset. Otherwise if this maximum
is exceeded and no suspicious sentences are found, the current section is closed
and added to the final result.

After all sentences are traversed, plagiarized sections in the final set R that
contain only one sentence are checked to be filtered out. Intuitively this step
makes sense as it can be assumed that authors do not copy only one sentence
in a large paragraph, but most likely more than one. Within the evaluation of
the algorithm described in Section 2.4.4 it could additionally be observed that
single-sentence sections of plagiarism are often the result of wrongly parsed
sentences coming from noisy data. To ensure that these sentences are filtered
out, but strongly plagiarized single sentences remain in the result set, an-
other threshold is introduced. Accordingly, dsnge defines the average distance
threshold that has to be exceeded by sections that contain only one sentence
in order to remain in the result set R.

As the optimization of parameters (Section 2.4.3) showed, the best results
can be achieved when choosing dgingie > dsusp, Which strengthens the intuitive
assumption that a single-sentence section has to be really different. On the
other hand, genetic optimization algorithms also generated parameter config-
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Algorithm 1 Sentence Selection Algorithm

input:
d; mean distance of sentence i
Osusp suspicious sentence threshold
Osingle single suspicious sentence threshold
mazx Lookahead maximum lookahead for combining non-susp. sent.
filterSingles indicates whether single susp. sent. should be filtered
variables:
SUSp; indicates whether sentence 7 is suspicious or not
R final set of suspicious sections
S set of sentences belonging to a suspicious section
T temporary set of sentences
cur Lookahead used lookaheads

: set susp; < false for all i, R« @&,S <« @,T « @&, curLookahead < 0
: for ¢ from 1 to n do
if d; > 0susp then susp; < true

1
2
3
4: end for

5: for ¢ from 1 to number of sentences do > traverse sentences
6 if susp; = true then

7 if T+ @ then

8 S« SuT > add all non-suspicious sentences in between
9 Ty

10: end if

11: S « Su{i}, curLookahead < 0

12: else if S # & then

13: curLookahead < cur Lookahead + 1

14: if curLookahead < maxLookahead then

15: T < Tu{i} > add non-susp. sentence 7 to temporary set T'
16: else

17: R« Ru{S} b finish section S and add it to the final set R
18: ST«

19: end if

20: end if

21: end for

22: if filterSingles = true then > filter single-sentence sections
23: for all plagiarized sections S of R do

24: if |S| =1 then

25: i < the (only) element of S

26: if d; < 0single then R < R\ {S}

27: end if
28: end for
29: end if
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2.4. The Plag-Inn Algorithm

urations that recommend to not filter single-sentence sections at all, but leave
them in the final prediction set of plagiarized sentences.

curLookahead = 0 S={56},R={} curLookahead = 2 S={5678}LR={}
@ N @ N
s Ongie | | € Bgingle
8 - == Bk i i ittt | ==
2 @
o° =l
' ~ 113 ' -
€ 65usp £ 6susp
T sentences T sentences
(a) (b)

curLookahead = 4 > maxLookahead S={}R={{5678}} R={{56,78}, {20}, {27,28,29,30,31,32,33}}

@ @

e 55\179\0 2 Ssmz\c
£ - == L ==y ==
] ]

© °

H 1 - < -
(9] o

g Bouep £ Beueo

T sentences sentences
(c) (d)

Figure 2.12.: Example of the Sentence-Selection Algorithm.

An example of how the algorithm (using maxLookhead = 3) works can be seen
in Figure 2.12. Diagram (a) shows all sentences, where all instances with a
higher mean distance than d4,s, have been previously marked as suspicious.
When reaching suspicious sentence 5, it is added to a newly created section
S. After adding sentence 6 to S, the lookahead variable is incremented as
sentence 7 is not suspicious. Reaching sentence 8 which is suspicious again,
both sentences are added to S as can be seen in Diagram (b). This procedure
continues until the maximum lookahead is reached, which can be seen in Dia-
gram (c). Because the next sentence is not suspicious (see marker), S is closed
and added to the result set R. Finally, Diagram (d) shows the final result
set after eliminating single-sentence sections. As can be seen, sentence 14 has
been filtered out as its mean difference is less than d4,4., Whereas sentence
20 remains in the final result R.
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A comprehensive example showing every step of the algorithm can be seen in
Section A.3 of the appendix.

2.4.3. Optimization

Test Set

To evaluate and optimize the Plag-Inn algorithm including the sentence-
selection algorithm, the PAN 2010 test corpus (PAN-PC-10), [147] has been
used. It originally contains more than 27,000 English documents, and thereof
approximately 4,700 documents which are specifically targeted for intrinsic
plagiarism detection. The documents consist of a various number of sen-
tences, starting from short texts from e.g. fifty sentences up to novel-length
documents of about 7,000 sentences. About 50% of the documents contain
plagiarism, varying the amount of plagiarized sections per document, while
the other 50% are left originally and contain no plagiarized paragraphs.

Most of the plagiarism cases are built by copying text fragments from other
documents and subsequently inserting them in the suspicious document, while
manual obfuscation of the inserted text is done additionally in some cases.
Also, some plagiarism cases have been built by copying and subsequently trans-
lating from other source-languages like Spanish or German. Finally, for every
document there exists a corresponding annotation file which can be consulted
for an extensive evaluation.

Detailed statistics about the PAN-PC-10 corpus are presented in Table 2.2.

Plagiarism per Document Obfuscation 0%
hardly (5%-20%) 45% ng;cial 0
medium (20%-50%) 15% .
ruch (50%-80%)  25% - low obfuscat%on 20%
entirely (> 80%) 15% - low obfuscation 20%

simulated 6%

Document Length translated({de,es} to en) 14%
Case Length

f:;)(gfum (1 (()_11(1)8 gg§ 2(5);(3 short (50-150 words) 34%

lon (100-1000 ) 15% medium (300-500 words)  33%

& Pp: ®  long (3000-5000 words)  33%

a) Document Statistics
() (b) Plagiarism Case Statistics

Table 2.2.: Statistics of the PAN-PC-10 Corpus.

As depicted in the previous section, the sentence-selection algorithm relies on
various input variables:
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® 0g,sp: suspicious sentence threshold. Every sentence that has a higher

mean distance is marked as suspicious.

® 0. gie: single suspicious sentence threshold. Every sentence in a single-
sentence plagiarized section that is below this threshold is unmarked in

the final step of the algorithm.

e maxLookahead: maximum lookahead. Defines the maximum value of
checking if there is a suspicious sentence occurring after non-suspicious
sentences that can be included into the current plagiarized section.

e filterSingles: boolean switch that indicates whether sections containing
only one sentence should be filtered out. If filterSingles = true, the
single suspicious sentence threshold g, 41¢ is used to determine whether
a section should be dropped or not.

Thereby, the values for the thresholds dy,,,, and dy;, ., respectively, represent
the inverse probability range of the Gaussian curve that include sentences with
a mean distance that is not marked as suspicious. For example, g, = 0.9973
would imply that dsusp = 1t + 30, meaning that all sentences having a higher
average distance than p + 30 are marked as suspicious. In other words, one
would find 99.73% of the values of the Gaussian normal distribution within a

range of p + 30. In Figure 2.11, §ysp resides between 1+ 20 and p + 30.

In the following the optimization techniques are described which should help
finding the parameter configuration that produces the best result. To achieve
this, predefined configurations have been tested as well as genetic algorithms
have been utilized. Additionally, the latter have been applied to find optimal
configurations on two distinct document subsets that have been split by the
number of sentences (see Section 2.4.3).

All configurations have been evaluated using the common IR-measures recall,
precision and the resulting harmonic mean F-measure. In this case the recall
value represents the percentage of plagiarized sections found, and the preci-
sion value corresponds to the percentage of correct matches, respectively. In
order to compare this approach to others, the algorithm defined by the PAN

workshop [147] has been used to calculate the according values!2.

12Note that the PAN algorithms of calculating recall and precision, respectively, are based on
plagiarized sections rather than plagiarized characters, meaning that if an algorithm detects
100% of a long section but fails to detect a second short section, the F-measure can never
exceed 50%. Calculating the F-measure character-based throughout the Plag-Inn evaluation
resulted in an increase of about 5% in all cases.
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Predefined Configurations

As a first attempt, 450 predefined configurations have been created by building
all'® permutations of the values in Table 2.3.

Parameter Range

Ogusp [0.994,0.995,...,0.999]
0. sngle [0.9980, 0.9985, ..., 0.9995]
mazx Lookahead [2,3,...,16]
filterSingles [yes, no]

Table 2.3.: Configuration Ranges for Predefined Parameter Optimization.

The five best evaluation results using the predefined configurations are shown
in Table 2.4. It can be seen that all of the configurations make use of the
single-sentence filtering, using almost the same threshold of 5;ingle = 0.9995.
Surprisingly, the maximum lookahead with values from 13 to 16 are quite high.
Transformed to the problem definition and the sentence-selection algorithm,
this means that the best results are achieved when sentences can be grouped
together in a plagiarized section while stepping over up to 16 non-suspicious

sentences.

As it is shown in the following section, genetic algorithms produced a better
parameter configuration using a much lower maximum lookahead.

Ogusp ~maxLook.  filterS. 4oy, .. | Recall Precision F

0.995 16 yes 0.9995 | 0.159 0.150 0.155
0.994 16 yes 0.9995 | 0.161 0.148 0.155
0.996 16 yes 0.9995 | 0.154 0.151 0.153
0.997 15 yes 0.9995 | 0.150 0.152 0.152
0.995 13 yes 0.9990 | 0.147 0,147 0.147

Table 2.4.: Best Evaluation Results using Predefined Configuration Parame-
ters.

Genetic Optimization Algorithms

Since the evaluation of the documents of the PAN corpus is computation-
ally intensive, a better way than just evaluating fixed configurations is to use
genetic algorithms [58] to find optimal parameter assignments.

3In configurations where single-sentence sections are not filtered, i.e. filterSingles = no,

permutations originating from the values of d7;,,,;. have been ignored.
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2.4. The Plag-Inn Algorithm

Genetic optimization algorithms emulate biological evolutions, implementing
the principle of the ”Survival of the fittest”'. In this sense genetic algorithms
are based on chromosomes which consist of several genes. A gene can thereby
be seen as a parameter, whereas a chromosome represents a set of genes, i.e.,
the parameter configuration. Basically, a genetic algorithm consists of the
following steps:

1. Create a ground-population of chromosomes of size p.
2. Randomly assign values to the genes of each chromosome.

3. Evaluate the fitness of each chromosome, i.e., evaluate all documents of
the corpus using the parameter configuration resulting from the individ-
ual genes of the chromosome.

4. Keep the fittest 50% of the chromosomes and alter their genes, i.e.,
alter the parameter assignments so that the population size is p again.
Thereby the algorithms recognize whether a change in any direction lead
to a fitter gene and takes it into account when altering the genes [58].

5. If the predefined number of evolutions e is reached, then stop the algo-
rithm, otherwise repeat from step 3.

With the use of genetic optimization algorithms significantly more parameter
configurations could be evaluated against the test corpus. Using the JGAP-
library'®, which implements genetic programming algorithms, the parameters
of the sentence-selection algorithm have been optimized. As the algorithm
needs a high amount of computational effort and to avoid overfitting, ran-
dom subsets of 1,000 to 2,000 documents have been used to evaluate each
chromosome, whereby these subsets have been randomized and renewed for
each evolution. As can be seen in Table 2.5, the results outperform the best
predefined configuration with an F-measure of about 23%.

What can be seen in addition is that the best configuration gained from us-
ing a population size of p = 400 recommends to not filter out single-sentence
plagiarized sections, but to rather keep them.

Genetic Optimization Algorithms On Document Subsets

By a manual inspection of the individual results for each document of the test
corpus it could be seen that in some configurations the algorithm produced

"The phrase was originally stated by the British philosopher Herbert Spencer.

B http://jgap.sourceforge.net, visited October 2012

31



2. Intrinsic Plagiarism Detection

p | Osusp maxLook. filterS. 5gingle Recall Precision F
400 | 0.999 4 no - 0.211 0.257 0.232
200 | 0.999 13 yes 0.99998 | 0.213 0.209 0.211

Table 2.5.: Parameter Optimization Using Genetic Algorithms.

very good results on short documents, while on the other hand it produced
poor results on longer, novel-length documents. Additionally when using other
configurations, the F-measure results of longer documents were significantly
better.

To verify the assumption that different length documents should be treated
differently, the test corpus has been split by the number of sentences in a
document. For example, when using 150 as splitting number, the subsets S<150
and S>150 have been created, containing all documents that have less than
150 sentences and containing all documents that have more than or exactly
150 sentences, respectively. Then, for each of the two subsets, the optimal
parameter configuration has been evaluated using genetic algorithms as it is
described in Section 2.4.3. Like before, a random number of documents from
1,000 to 2,000 has been used to evaluate a chromosome. An abstract schema
of the document subsets strategy using a splitting number of 150 is sketched
in Figure 2.13.

less than 150 sentences more than 150
per document sentences per document

genetic optimization algorithm genetic optimization algorithm

optimal configuration optimal configuration

F<1 50 F>1 50

final result

(combined F)

Figure 2.13.: Abstract Strategy of Optimizing Parameters for Document Sub-
sets.
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2.4. The Plag-Inn Algorithm

Table 2.6 shows the best configurations produced by genetic algorithms using
the sentence-split document subsets. For the dividing number 100, 150 and
200 sentences per document have been chosen as this seemed to be the optimal
range found by manual inspection (as discussed in Section 2.4.5 this could be
improved in future work).

With an F-measure of about 50% on the short-documents subset and 21% on
the long-documents subset the sentence-split evaluation worked best with a
splitting number of 100 and a resulting overall F-measure of 35.7%. All config-
urations significantly outperform the genetic algorithm optimization described
earlier, in the best case by over 12%. Moreover, what can be seen in all config-
urations is that the short-documents subsets could be optimized significantly
better, resulting in F-values of about 45% to 50%. As discussed later, this
already indicates that the algorithm is well suited for short documents.

subset | dsusp maxLook. filterS. dgpge | Recall Precision F
Ss100 | 0.998 6 yes 0.9887 | 0.205 0.216 0.210
S<00 | 0.999 1 no - 0.501 0.508 0.504
0.353 0.362 0.357
Ss150 | 0.963 9 yes 0.9993 | 0.118 0.109 0.113
S50 | 0.999 4 no - 0.494 0.478 0.486
0.306 0.294 0.300
Ss200 | 0.963 10 yes 0.9998 | 0.108 0.115 0.111
S<o00 | 0.999 2 yes 0.9999 | 0.441 0.457 0.449
0.275 0.286 0.280

Table 2.6.: Parameter Optimization Using Genetic Algorithms on Document
Subsets Split by the Number of Sentences.

2.4.4. Evaluation

The following section shows an extensive evaluation of the Plag-Inn approach
using the sentence selection algorithm. All results are based on the optimal
configuration gained from using the genetic optimization algorithms over the
whole PAN-PC-10 test corpus as described in Section 2.4.3. Although the
genetic algorithms optimized for the document subsets split by text length
produced significant better results, it is more realistic to use just one parameter
configuration in order to avoid overfitted results (manual inspection showed
that small documents contained significantly less plagiarism cases in the test
corpus).

Figure 2.14 shows the overall evaluation result with an F-measure of 23% As
shown, using the best parameter configuration on document subsets even 35%
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Brecall
Oprecision

13

overall artifical plagiarism by manual overall
plagiarism translation obfuscation (on 2 document
>75% subsets splitted
by text length)

Figure 2.14.: Plag-Inn: Overall Evaluation Results.

can be achieved. It can be seen that plagiarism cases created by translation
could be detected better than those created artificially'®. This result is as
expected because the grammar of another language is always different than
the target language (English), and translation - which is done by automatic
algorithms in most cases - produces changes in grammar that can be detected
more easily.

The fourth column shows the results for documents where at least 75% of the
plagiarism cases have been built by copying and subsequently doing manual
obfuscation by hand. The F-measure for those cases almost reaches 30%, which
indicates that the approach works very well for real plagiarism cases, i.e., cases
that were created by humans rather than by computer algorithms. Finally, for
comparison the results gained from the best parameter configurations on two
document subsets split by the number of sentences contained is shown in the
last column. As stated before, the best result of about 35% could be achieved
by using a splitting number of 100.

In all results the precision is higher than the recall, meaning that the approach
is better in correctly interpreting suspicious passages than in finding them. In
other words, if the algorithm finds something, the accuracy is high.

The Plag-Inn approach achieves significantly different results on documents
that contain plagiarism and on documents that do not contain plagiarism, as
it is shown in Figure 2.15. Thereby, clean documents are processed very well
and with balanced values for recall, precision and the according F-value of

16 yrtificially means that a source fragment has been copied and modified by computer algo-
rithms.
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= B documents not containing
3 20 plagiarism
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plagiarism
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Figure 2.15.: Plag-Inn: Evaluation Results for Documents Containing and Not
Containing Plagiarism Cases.

about 35%, respectively. On the other side, documents containing plagiarized
sections are obviously more difficult to detect for the algorithm, while the
precision is consistently higher than the recall as experienced before.

Evaluations show that the shorter documents get, the better the algorithm
works. Like it is illustrated in Figure 2.16, an F-measure of over 40% could be
achieved on documents containing less than 300 sentences. Moreover as stated
before, the algorithm performs steadily better when documents get shorter,
reaching an F-measure of nearly 70% on very short documents containing less
than 50 sentences. As the algorithm uses grammatical inconsistencies to find
plagiarized sections, it might be that the variety of sentence syntaxes is too
high in long documents, such that the algorithm fails frequently and produces
the overall result of only 23%.

80
70
60

50

@recall

percent
3
o

DOprecision

|F

<300 <250 <200 <150
number of sentences per document

Figure 2.16.: Plag-Inn: Evaluation Results for Short Documents.

What could be found in addition is that the approach is sensitive to the number
of plagiarized sections per document as it is shown in Figure 2.17. Here,
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2. Intrinsic Plagiarism Detection

all documents that contain plagiarism have been inspected concerning the
concrete number of plagiarism cases per document. It can be seen that the
more sections of a document have been plagiarized, the better the results get.
In other words, the more an author steals in his work, the more likely it is
that it is detected by the algorithm.

Finally, the best option to improve the approach in future work is to reduce the
number of false-positives, which is depicted in Figure 2.18. Diagram (a) shows
the number of false-positives and false-negatives, respectively, where over 35%
of all test corpus documents have wrongly been marked as plagiarized. On the
horizontal axis the number of detected plagiarized sections for false-positives,
and the number of not detected sections for false-negatives are shown. For
about half of the wrongly predicted false-positives, the algorithm detected less
than 5 plagiarism cases, and for about 10% of the documents the algorithm de-
tected only one plagiarized section. This means that improving the algorithm
in a way such that the false-positives that contain only one suspicious passage
could be reduced or eliminated, this would lead to a significantly better overall
result.

45
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number of plagiarized sections per document
(of documents containing plagiarism)

Figure 2.17.: Plag-Inn: Evaluation Results Correlated to Number of Plagia-
rized Sections per Document.

In diagram (b) the percentage of predictions is shown. According to the high
number of false-positives, the algorithm predicted too much for about half
of the documents, i.e., it detected plagiarized sections where there originally
were less or even none. For the other half, too less or the exact number of
sections have been detected. It has to be stressed that the amount of exact
predictions in terms of plagiarized sections does not necessarily correspond
to the number of correct detections. For example, the algorithm might have
found four plagiarized sections in a document that contained exactly four
plagiarized sections, but it might be the case that only two of them are correct.
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Nevertheless, manual inspections of the results have shown that the majority
of exact predictions really correspond to the correct sections.

a

documents (%)
B oR NN
w o & o

o

35 T
/ N
30 / h Dpredicted too less
Bfalse-positives | Wpredicted too
much
DOfalse-negatives
DOpredicted exact
(not w.r.t. to
correctness)
all (>0) <5 <3 =1
falsely detected plagiarism sections /
not detected plagiarized sections

@ ®

Figure 2.18.: Plag-Inn: False-Positives, False-Negatives and General Predic-
tion Statistics.

2.4.5. Conclusion

In this Chapter the intrinsic plagiarism detection approach Plag-Inn is de-
scribed: it aims to find plagiarism in text documents by inspecting the sus-
picious document only. The main idea is to analyze grammatical structures
that authors use to build sentences by calculating pg-grams and pqg-gram dis-
tances between sentences, in order to find inconsistencies in the syntax. After
irregularities have been found by using Gaussian normal distribution fitting,
an algorithm that selects and combines suspicious sentences is presented.

Furthermore, various parameters of the algorithm have been optimized by us-
ing predefined configurations and genetic algorithms. Using the best parame-
ter setting, the algorithm achieves an F-measure of about 23%. By additionally
using different settings for short and long documents, an overall F-measure of
about 35% could be achieved, which is a rather high value for intrinsic plagia-
rism detection systems. In addition, an F-score of over 50% could be gained
for a subset of short documents. Thereby the splitting number for the two
document subsets has intuitively been chosen, and it should be considered to
find the optimal value algorithmically in future work.

Extensive evaluations showed that the approach works very well on short docu-
ments containing less than 300 sentences, and that the more authors plagiarize,
the more likely it is for the algorithm to detect the according sections. For
documents consisting of less than 50 sentences, an F-measure of nearly 70%
could be reached. Nevertheless, a drawback of the approach is that it predicts
too much in many cases, i.e., it detects plagiarism where there is none, lead-
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ing to a high number of false-positives. Future work should concentrate on
reducing this number to improve the algorithm significantly.

On the other side, the number of false-negatives is low, implying that the
approach is well-suited for ensuring that a document is not plagiarized. Eval-
uations showed that if the algorithm states that a document is plagiarism-free,
it is right in over 90% of the cases.
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2.5. The POS-PlagInn Algorithm

2.5. The POS-Plaglnn Algorithm"’

2.5.1. Algorithm

The basic principle of the POS-Plag-Inn algorithm has been inherited from the
Plag-Inn algorithm described earlier, i.e. like the original approach it attempts
to detect irregularities in the grammar syntax of sentences in order to expose
possible plagiarism in text documents. The major difference is the analysis of
the grammar, which is made by utilizing POS tags only rather than inspecting
full parse trees. Also, the comparison of sentences is made by using dynamic
programming algorithms instead of pg-gram distances.

Similarly to the original approach, the POS-Plag-Inn algorithm consists of the
following steps:

1. Cleaning the document and splitting it into single sentences.

2. Calculating POS tags for each extracted sentence and computing POS
tag sequences reflecting the building structure.

3. Comparing each POS tag sequence with each other sequence and storing
the difference into a distance matrix.

4. Calculating the average distance for each sentence and utilizing a Gaus-
sian normal distribution function.

5. Using the sentence selection algorithm and marking sentences/text sec-
tions as suspicious if they differ significantly.

POS tag extraction

After cleaning and splitting the document into single sentences (see Section
2.4.1), POS tags are assigned to each word of a sentence using the Stanford
POS Tagger [183]. For example, sentence S; of the previous section is tagged
with the following tags:

The/DT strongest/JJIS rain/NN ever/RB recorded /VBN in/IN India/NNP
shut/VBD down/RP the/DT financial/JJ hub/DT in/IN Mumbai/NNP |
officials /NNS said/VBD today/NN .

1"This section is based on and contentual partly reused from the paper: M. Tschuggnall
and G. Specht. Countering Plagiarism by Exposing Irregularities in Authors’ Grammar.
In Proceedings of the European Intelligence and Security Informatics Conference (EISIC),
Uppsala, Sweden, August 2013, IEEE, pages 15-22. [186]
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2. Intrinsic Plagiarism Detection

Although the information extracted by performing POS tagging only is more
shallow than constructing the full parse tree, results discussed in Section 2.5.3
indicate that it is sufficient to find inconsistencies in text building structures.
Moreover it is computationally significantly easier, especially with longer and
more complex sentences.

In order to reflect the structure information only, the concrete word informa-
tion is neglected. Thus, for each sentence a POS tag sequence like the following
is created and stored:

DT-JJS-NN-RB-VBN-IN-NNP-VBD-RP-DT-JJ-DT-IN-NNP-NNS-VBD-NN

Distance calculation

Following the original Plag-Inn approach, each sentence is compared against all
other sentences by calculating a distance and storing it in a distance matrix:

0 dig - din

S T A
Dp=1* % - d3n

* * 0

The key concept used by this algorithm variant is the computation of d; ;,
i.e., the distance between the POS tag sequences of sentences ¢ and j. Here,
the distances are calculated using modified sequence alignment algorithms that
are frequently applied in the field of genetics. More concretely, the well-known
algorithms Global Alignment (Needleman-Wunsch) [124] and Local Alignment
(Smith-Waterman) [161] have been adapted to align POS sequences.

Scarites

Carenum
Fazimachus
FPheropzophus
Brachinus armiger
Erachinus hirsutus
Aptinus

F=eudomorpha

Figure 2.19.: Small Fragment of DNA Sequence Alignment of Different Species.
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The original idea of the algorithms is to ideally align two DNA sequences (see
Figure 2.19'®) using cost models that incorporate gene (mis)matches, inser-
tions and deletions, resulting in an overall score of how similar the sequences
are. Thereby global alignment solutions align the whole sequences, whereas
the local alignment algorithm searches for a local maximum of similarity. For
example, using 2 for a match score and -1 for insertion, deletion or mismatch
costs, respectively, the similarity value of the DNA-strings'? CTCTAGCATT and
GTGCAC could result in a score of 2 for the global alignment:

CTCTAGCATT
| F1
--GT - CA-C
and a score of 7 for the local alignment:
TAGCA
| (N
T-GCA

In case of the plagiarism detection algorithm the alignment methods have been
modified to be able to align POS tags. Thereby each tag is treated as a single
instance: for example, aligning the two sentences

(1) This/DT is/VBZ a/DT simple/JJ sentence/NN

(2) This/DT is/VBZ not/RB the/DT most/RBS complex/JJ construction/NN

using the same scoring scheme would result in the following global alignment
with score 8:

DT VBZ - DT - JJ NN

L
DT VBZ RB DT RBS JJ NN

8picture taken from http: //www.sequence-alignment.com, visited April 2014

19The characters represent the nucleotides contained in a DNA string: Adenine (A), Guanine
(G), Cytosine (C), Thymine (T)
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In order to not only incorporate the maximum local similarity calculated by
the local alignment algorithm, but to reflect the difference of whole sentences,
the global alignment algorithm has been chosen as a first attempt. Addition-
ally global alignment scores implicitly also incorporate differences in sentence
lengths, a feature which has also been used in previous approaches. Neverthe-
less, manual analysis of the evaluation of some random documents indicates
that there is no significant difference in overall results when using global or
local alignment.

As the POS-Plaglnn algorithm tries to find inconsistencies rather than simi-
larities between sentence structures, the scoring scheme is inverted, i.e., using
a negative value for matches and positive values for mismatches, insertions or
deletions, respectively. The weights for all further optimizations and evalua-
tions have preliminary been defined to be -1 for matches, 1 for insertions/dele-
tions and 1 for mismatches. With the inverted scheme, the distance matrix
D,, as stated above is calculated by aligning each pair of sentences i and j (i.e.
their POS tag sequences) and storing their distance d; ;.

An example of a visualized distance matrix of a document containing about
2000 sentences is illustrated in Figure 2.20. It can be seen that there are
significant differences in the style of the text around sentence number 900.
Additionally it is important to note that these distances are significantly dif-
ferent with respect to all other sentences, i.e., they represent not just local
peaks.

Predicting Plagiarized Sentences

Having computed all distances between sentences, the further procedure is
similar to the Plag-Inn algorithm. Using the distance matrix, the average
distance with respect to all other sentences is calculated for each sentence, and
the average distance vector is then fitted into a Gaussian normal distribution,
resulting in estimations of the mean p and standard deviation o.

By using the thresholds d4,s, (every sentence with higher mean distance is
marked as plagiarized) and Osingle (the mean distance of single sentences have
to be above this threshold in order to be marked as plagiarized) and apply-
ing the sentence selection algorithm as described in Sections 2.4.1 and 2.4.2,
respectively, the final prediction of possible plagiarism is made.
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POS tag sequence distance

2000

Figure 2.20.: POS-Plag-Inn: Distance Matrix of a Sample Document Consist-
ing of about 2000 Sentences with Global Peaks.?"

2.5.2. Optimization

The algorithm variant has been optimized similarly to the Plag-Inn algorithm
and evaluated on the same data set (PAN-PC-10). Recapitulating Section
2.4.3, the following parameters have been optimized:

® 0g,sp: Suspicious sentence threshold
°® 0. gle: single suspicious sentence threshold

e maxLookahead: maximum lookahead

e filterSingles: boolean switch; should single sentences be filtered using

5/

‘?
single OF not

As with the Plag-Inn algorithm, genetic algorithms have been used to op-
timize parameter settings. As a consequence of the improved results of the

20©) 2013 IEEE
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P dsusp lmaz  filter  Osingle | Recall Precision F
200 | 0.99981 3 yes  0.99998 | 0.282 0.329 0.304
400 | 0.99998 2 yes  0.99997 | 0.261 0.319 0.287

Table 2.7.: Parameter Optimization Using Genetic Algorithms.?!

original algorithm by using document subsets of long and short documents,
this technique has also been evaluated.

Genetic Optimization Algorithms

The best configuration reaching an F-measure of about 30% can be seen in
Table 2.7, where p and l,,4, correspond to population sizes and the maximum
lookahead used, respectively. Surprisingly, what can be seen as well is that
the best configuration produced by a population size of 400 recommends to
filter single-sentence plagiarism sections with a lower threshold than multiple-
sentence sections. Although a better configuration could be found, this result
still represents a local maximum which indicates that authors might as well
plagiarize single sentences rather than longer text fragments only.

Genetic Optimization Algorithms On Document Subsets

As done with the original approach, the data set has been split into large
and short documents in order to find optimal parameter configurations for the
distinct subsets. Table 2.8 shows the best configurations produced by genetic
algorithms using the sentence-split document subsets with dividing numbers
of 100, 150 and 200 sentences per document, respectively.

With an F-measure of about 52% for documents having less than 100 sen-
tences, and about 22% for all longer documents, respectively, a total F-value
of 37% could be achieved with the best parameter configuration. Thereby the
algorithm performed significantly better on documents having less sentences
on all three evaluation parts, which indicates that it works very good on about
scientific-paper-length sizes and has drawbacks on novel-length sizes. A first
intuitive conclusion may be that the longer documents get, the more variety
on sentence constructions it contains, leading to blurring syntax.

Like in the previous Plag-Inn algorithm, the dividing numbers of 100, 150 and
200 have been chosen manually and are not guaranteed to be optimal. In
this sense future work should also incorporate genetic algorithms to find the
optimal dividing threshold for the POS-Plag-Inn algorithm.

*1©) 2013 IEEE
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subset dsusp ~ maxLook.  filterS.  dsingle | Recall Prec F
Ss100 | 0.99996 3 yes 0.99999 | 0.188  0.271 0.222
S<100 | 0.99999 8 yes 0.99999 | 0.520 0.524 0.522
0.354 0.398 0.37}
Ss150 | 0.96639 10 yes 0.99987 | 0.158 0.090 0.115
S<150 | 0.99975 1 yes 0.99999 | 0.504 0.527 0.515
0.331 0.309 0.319
Ss000 | 0.99996 9 no - 0.182 0.250 0.211
S<a00 | 0.99999 1 yes 0.99992 | 0.475 0.495 0.485
0.829 0.373 0.349

Table 2.8.: Parameter Optimization Using Genetic Algorithms on Document
Subsets Split by the Number of Sentences.??

2.5.3. Evaluation

Reusing the document sets of the PAN 2010 workshop (PAN-PC-10) as de-
scribed in Section 2.4.3, the algorithm has been trained and optimized with
the training set and subsequently evaluated against the test corpus consisting
of about 4000 English documents.

Table 2.9 summarizes the evaluation results gained from using the optimization
techniques described earlier. With an F-score of 52% the best result could be
achieved by applying the parameter setting optimized for documents having
less than 100 sentences. While this score has been found by evaluating the
corresponding document subset only (< 100 sentences), an F-score of 30%
could be reached by using a single parameter configuration over the whole test
set.

Furthermore the PAN workshop metric granularity has been measured. It
describes the ”grouping” quality of correctly annotated plagiarized sections,
meaning that a continuous plagiarized section should also be annotated as one
section rather than multiple sections. For example, a granularity value of 2
would denote that the algorithm in average predicted 2 sections instead of one.
Hence, a granularity value of 1.0 is optimal, which could be achieved in most
of cases as can be seen in Table 2.9.

Regardless of the optimization splitting number of sentences to be contained in
a document, the algorithm works best for the document subsets having fewer
sentences. While the subsets with documents having more sentences achieve
only an F-score of about 10-20%, their counterpart reside with F-scores of

*2©) 2013 IEEE
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document subset Granularity Recall Precision F
less than 100 sentences 1.0 0.520 0.524 0.522
less than 150 sentences 1.0 0.504 0.527 0.515
less than 200 sentences 1.0 0.475 0.495 0.485

all documents 1.05 0.282 0.329 0.304

Table 2.9.: Best Evaluation Results using the PAN-PC-10 data set.?

about 50%. By combining the individual results for split subsets, F-scores
of about 35% could be reached. Concretely, the variant using the splitting
number of 100 sentences per document worked best with an F-score of 37%.
This is also the global optimum in comparison to the evaluation using just a
single parameter setting, which achieves an F-score of about 30%. Generally,
recall and precision values are balanced in all settings, tending to have a higher
precision in most cases. An overview of the global results is depicted in Figure
2.21.
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#sent #sent  #sent split by #sent #sent  #sent split by #sent #sent  #sent split by no split
>=100 <100 100 overall >=150 <150 150 overall >= 200 <200 200 overall

percent

Figure 2.21.: POS-Plag-Inn: Global Evaluation Results.

Similarly to the original approach, the POS tag variant achieves different
results when separating documents that contain and not contain plagiarism
cases. As shown in Figure 2.23, the algorithm processes plagiarism-free doc-
uments at a significantly higher accuracy than documents which contain pla-
giarism.

In order to avoid overfitted results adjusted to the training set, the variant
using just a single parameter configuration over the whole test subset has
been used for all further analyses. Therefore, because previous optimizations
already showed that the algorithm is sensitive to the number of sentences per
document, the single parameter configuration has been evaluated according
to the number of sentences. The results illustrated in Figure 2.23 indicate

*©) 2013 IEEE
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Figure 2.22.: POS-Plag-Inn: Evaluation Results for Documents Containing
and Not Containing Plagiarism Cases.

that the less sentences a document has, the better the algorithm operates,
i.e., predicts plagiarism correctly. For documents consisting of less than 50
sentences, an F-score of over 65% could be reached. On the other side, a
possible explanation for the rather poor results concerning longer, novel-length
documents might be that structural syntactic differences are blurred on longer
documents. In other words, if an author writes long documents, s/he may
also use different sentence construction sets throughout the document in an
unconscious or even conscious manner that compensate differences in style.
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Figure 2.23.: POS-Plag-Inn: Evaluation Results By Number of Sentences Per
Document.?*
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2. Intrinsic Plagiarism Detection

To investigate the results for documents containing plagiarism, the number
of false-positives and false-negatives, respectively, have been evaluated. The
results depicted in Figure 2.24 show that the number of false-positives is rather
high, i.e., the algorithm often predicts plagiarism where there actually is none.
Hence, the algorithm should also be improved in the future by eliminating
false-negatives.

Diagram (a) in Figure 2.24 illustrates the number of falsely detected plagia-
rized sections on plagiarism-free documents, and the number of not detected
plagiarized sections on documents that contain plagiarism, where the number
of false-positives is significantly higher. According to previous observations
the rate of false-positives has been compared with the number of sentences
contained in a document. The result shown in diagram (b) make clear that
the main set of false-positives result from long documents, i.e., the shorter the
document is, the less the probability of falsely predicted plagiarism is. Finally
Figure 2.25 illustrates that the algorithm predicts too much plagiarism cases
in general. For example, if a document contains three plagiarized sections, it is
often the case that significantly more than three sections are predicted, which
results in a decrease of the F-score for documents containing plagiarism.
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Figure 2.24.: POS-Plag-Inn: False-Positives and False-Negatives.2

The number of documents where the algorithm predicted too few and the num-
ber of documents where it predicted the exact amount of plagiarism cases are
balanced equally. Also for this evaluation, exact predictions do not necessarily
correspond to correct predictions (see Section 2.4.4).

Compared to the original algorithm this variant performs slightly better, espe-
cially on short documents. This is a surprising outcome as the POS-Plag-Inn

*©) 2013 IEEE

48



2.5. The POS-PlagInn Algorithm

O predicted too less

B predicted too much

Opredicted exact (not
w.r.t. to correctness)

Figure 2.25.: POS-Plag-Inn: Plagiarism Prediction Distribution.?¢

algorithm doesn’t reflect the building structure at all but only analyzes the us-
age of POS tag sequences. A possible explanation might be that the distance
metrics produce different results, especially on longer sentences. For example,
if an author uses both long and short sentences, the pg-gram distance grows
at a significantly higher pace than the global alignment algorithm, as the dif-
ference between grammar trees also grows significantly with long sentences.
On the other hand, the global alignment distance grows at most linearly with
the number of words (using the proposed scoring scheme), and can therefore
better smooth distances of long and short sentences.

Nevertheless, the assumption that the analysis of grammar structures may
produce better results - according to the fact that trees contain more infor-
mation than pure POS tags - is evaluated and approved by a third variant of
the Plag-Inn algorithm, which is described in the following section.

?6@©) 2013 IEEE
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2. Intrinsic Plagiarism Detection

2.6. The PQ-Plaglnn Algorithm™

2.6.1. Algorithm

The intention of the PQ-Plag-Inn variant is to improve the Plag-Inn algorithm
by getting rid of sentence-by-sentence comparisons and using grammar tree
profiles of whole text fragments instead. Thereby frequencies of pg-grams
occurring in predefined sentence windows are compared against the frequencies
of pg-grams occurring in the whole document. By applying this idea, full parse
trees can be utilized without facing the previously mentioned drawback of
the pg-gram distance when comparing grammar trees of significantly different
complexity (i.e. long and short sentences).

Summarizing, the PQ-Plag-Inn algorithm consists of the following steps:
1. Cleaning the document and splitting it into single sentences.
2. Computing full parse trees for each sentence.
3. Creating the document profile.

4. Traversing the document using sliding windows and comparing each win-
dow profile against the document profile.

5. Utilizing a Gaussian normal distribution and applying the sentence se-
lection algorithm.

The first two steps are equal to the original algorithm described in Section
2.4.1, i.e., the document is cleaned, split into single sentences by using the
Stanford Parser, and then a grammar tree is calculated for each sentence.
Also in this variant, the terminals of the parse trees are ignored as purely the
grammar of authors is investigated. As the main difference in this variant,
a pg-gram profile of the whole document is calculated subsequently, which
is then compared to profiles computed of sentences in sliding windows. Fig-
ure 2.26 depicts the basic sliding window technique, and each of the steps is
explained in more detail in the following.

2TThis section is based on and contentual partly reused from the paper: M. Tschuggnall and
G. Specht. Using Grammar-Profiles to Intrinsically FExpose Plagiarism in Text Documents.
In Proceedings of the 18th International Conference on Application of Natural Language
to Information Systems (NLDB), Salford, UK, June 2013, volume 7934 of LNCS, Springer,
pages 297-302. [188]
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Document Profile

pg-gram occurence %]
NP-NN-#-%-% 2.68
PP-IN-#-%-% 2.25
NP-DT-#=%-% 1.99
NP-NNP-#-%-% 1.44
S-VP-#*-*-VBD 1.08

Y

Abstract

Window n Profile

Figure 2.26.: Overview of the PQ-Plag-Inn Algorithm.

Creating the document profile

Having computed a grammar tree for every sentence, the pg-gram index of
each tree is calculated and stored. Subsequently, the pg-gram profile of the
whole document is calculated by combining all pg-gram indices of all sentences.
In this step the number of occurrences is counted for each pg-gram and then
normalized by the document length, i.e., normalized by the total number of
distinct pg-grams.

As an example, the five mostly used pg-grams (using p = 2 and ¢ = 3) of a
selected document are shown in Table 2.10. The pg-gram profile then consists
of the complete table of pg-grams and their occurrences in the given document,
indicating the favors or the style of syntax construction used by the (main)
author.

Comparison using sliding windows

The basic idea is now to utilize sliding windows and calculate the distance for
each window compared to the pg-gram profile. A window has a predefined
length [ which defines how many sentences should be contained, and the win-
dow step s defines the starting point of the windows (i.e. the starting point
of window i is equal to the starting point of window i — 1 + s).
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2. Intrinsic Plagiarism Detection

pg-gram occurrence [%] ‘
NP-NN—*—*—% 2.68
PP-IN—*-%—x% 2.25
NP-DT—*—*—x% 1.99
NP-NNP—*—*—% 1.44
S-VP-*-%-VBD 1.08

Table 2.10.: Example of the Five Mostly Used pg-grams of a Sample Document.

900

800 —

700 -

600 —

500

400

300

distance to document pg-gram profile

200 —

plagiarized
(solution)

100 |- L -
- L - predicted
(algorithm)

| | | | | |
200 400 600 800 1000 1200 1400

window start position in document

Figure 2.27.: PQ-Plag-Inn: Distances of pg-gram Occurrences of Sliding Win-
dows Compared to the Document Profile.

Then for each window the pg-gram profile P(w) is calculated and compared
to the pg-gram profile of the whole document. For calculating the distance,
the measure proposed in [169] has been used, as it is well suited for comparing
short text fragments (the window w) with large text fragments (the document
D):

d(w,D)= >

peP(w)

(2(fw(p) - fo(p)) )2
fw(®) + fo(p)

Thereby f,(p) and fp(p) denote the normalized frequencies of occurrences of
pg-gram p in the window w and the document D, respectively. An example
of the sliding window distances of a whole document is illustrated in Figure
2.27. It shows the distance for each sliding window starting position, using a
window length of [ =5 and a window step of s =1 in this case.

As it can already be seen visually, some sliding windows differ significantly
more than others, which may be the case because they contain plagiarized
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2.6. The PQ-PlagInn Algorithm

sentences. The final decision of whether sentences should be predicted as
plagiarized or not is made like it is done in all previous algorithm variants, i.e.,
by fitting a Gaussian normal distribution function and estimating the mean p
and standard deviation o. By using the same thresholds 04, and applying
the previously presented sentence selection algorithm, the final prediction of
plagiarism is made. Note that because of the fact that sliding windows of
(at least two) sentences are used in this approach, the threshold dgipngie is not
needed. On the other hand, blocks of sentences may still be grouped together,
and initially unmarked sentences may be marked as suspicious if they reside
in between two suspicious blocks.

The bottom of the diagram shown in Figure 2.27 depicts an example of the
final prediction of the algorithm together with the correct solution obtained
from the corresponding test set annotations of the document.

2.6.2. Evaluation
Test Set and parameters

Like the previous variants and for comparability reasons, the PQ-Plag-Inn
algorithm has been evaluated using the PAN-PC-10 data set and optimized
by using predefined parameter configurations as well as genetic optimization
algorithms. Concretely, the parameters shown in Table 2.11 have been used.

Parameter Description Range

Oqusp threshold for sliding windows | [0.994,0.995,...,0.999]
mazxLookahead | max. lookahead (sent. select.) | [2,3,...,16]

l window length (in sentences) | [2,3,:+,10]

s window step (in sentences) [1,2]

Table 2.11.: Configuration Ranges for the Evaluation.

Results

Table 2.12 shows the best evaluation results for each window length and step
using the pg-gram configuration p = 2 and ¢ = 3. It can be seen that this
approach performs better than the previous variants, approving the intuitive
assumption that the utilization of full parse trees is more expressive than using
pure POS tags without structure information.

Given the window length [, the algorithm worked better using a window step
of s = 2 most of the times. The maximum lookahead used for the sentence
selection algorithm resides between 1 and 5, i.e., has a value range like it
is expected. Overall, the best result could be produced by using a window
length of | = 4, a window step of s = 2 and a maximum lookahead of 2:
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’ Il s dsusp maxLook. ‘ Recall Precision F
2 1 0.99364 3 0.322 0.362 0.341
2 2 0.95848 4 0.301 0.423 0.352
3 1 0.99876 2 0.278 0.387 0.324
3 2 0.99585 2 0.298 0.423 0.349
4 1 0.98954 3 0.267 0.352 0.303
4 2 0.99492 2 0.417 0.424 0.420
5 1 0.99538 4 0.304 0.374 0.335
5 2 0.99609 2 0.358 0.412 0.383
6 1 0.97443 4 0.277 0.387 0.323
6 2 0.99369 5 0.371 0.411 0.390
7 1 0.99207 1 0.359 0.366 0.362
7 2 0.99342 2 0.325 0.394 0.356
8 1 0.99078 4 0.415 0.379 0.396
8 2 0.99914 2 0.410 0.421 0.415
9 1 0.99188 2 0.429 0.382 0.404
9 2 0.98850 3 0.297 0.418 0.347
10 1 0.99795 5 0.378 0.383 0.381
10 2 0.99548 4 0.426 0.412 0.419

Table 2.12.: Best Evaluation Results of the PQ-Plag-Inn Algorithm.

this configuration could achieve an F-measure of 42%, outperforming all other
Plag-Inn variants. A visualization of the results is shown in Figure 2.28.

Also for the PQ-Plag-Inn variant a more detailed evaluation has been con-
ducted to measure its performance. Basically, the results are similar to the
previous algorithm variants, i.e., as a main characteristic it performs signifi-
cantly better on documents that do not contain plagiarism. Moreover, it also
works better with decreasing length of the texts as can be seen in Figure 2.29,
but the differences between longer and shorter texts is not that high as in
other variants, which can be intrepreted in a way that by using profiles the
Plag-Inn algorithms becomes more stable.

On the other side and what is illustrated in Figure 2.30, the plagiarism detec-
tion distribution differs significantly from the other variants. Where previously
the algorithms predicted too much for the majority of documents, this problem
could be substantially diminished. As can be seen, for most of the documents
the exact amount of plagiarized section has been predicted, i.e., combined
with other analyses, this results from predicting non-plagiarized documents
correctly. Summarzing, this improvement in the distribution pie is most likely
also responsible for the good F-measure achieved by this algorithm variant.
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Figure 2.30.: PQ-Plag-Inn: Plagiarism Detection Distribution.
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2.7. Conclusion and Future Work

In this chapter, the Plag-Inn algorithm including variants has been described,
which is an intrinsic plagiarism detection approach based on a novel style
feature. The main idea is to analyze the grammar of authors and to find
irregular sentence constructions in order to expose plagiarism. The algorithm
thereby uses a full parse tree for every sentence, calculates the corresponding
pg-gram index and compares the latter with the index of all other sentences
by using the pg-gram distance, to quantify the differences of grammar trees.
By fitting a Gaussian normal distribution to the distances and applying a final
sentence selection procedure, a prediction of plagiarism is made.

Similarly, the POS-Plag-Inn algorithm is also based on sentences, but analyzes
only pure POS tag sequences. The distances between these sequences are then
calculated by using dynamic programming algorithms, which are used as a
basis for the subsequent steps equally to the original algorithm.

Finally, the major difference between the original algorithm and the third PQ-
Plag-Inn variant is that the distance calculation is not based on a sentence-
by-sentence comparison, but on profiles of sliding windows. Thereby a profile
consists of an ordered list of all occurring pg-grams including their normalized
frequencies.

Comparison of the different variants

All three variants of the approach have been evaluated using a state-of-the-
art test data set, whereby parameters have been optimized using different
methods. Figure 2.31 visualizes a comparison of the performance of the three
approaches over the whole test data set (i.e. the figure is showing the results
using the best configuration for all the documents rather than optimizations
of large/short document subsets). As can be seen, the PQ-Plag-Inn variant
performs best with an accuracy of over 40%. Compared to other state-of-
the-art algorithms, which achieve at most 30-33% on the same data set, this
result is very promising.?® Considering the good performance of the PQ-
Plag-Inn algorithm, the methods used in this variant, i.e., pg-gram profiles,
represent the basis also for the authorship attribution, profiling and multi-
author decomposition approaches described in the following chapters.

28Nevertheless, it has to be stated for fairness reasons that the other approaches on this data
set were conducted during a workshop competition, i.e., they had no opportunity to optimize
parameters. Although the Plag-Inn algorithms were also optimized for a different training
set, they could be tested and refined with the actual data set.
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Figure 2.31.: Comparison of the Performances of the Plag-Inn Algorithm Vari-
ants.

Future Work

As the algorithms presented in this chapter are based on the grammatical
structure, the syntax rules that allow authors to create sentences is of high
importance. Consequently, the assumption that the more complex a language
is with respect to the grammar rules, the better plagiarism can be detected,
should be evaluated. For example, natural languages like German or French
give authors more possibilities to formulate text, and thus the style may dif-
ferent more significantly and it should be easier for algorithms to expose pla-
giarism. This should be verified /falsified by doing respective experiments.

Moreover, the algorithms should make use of previous research in the field of
intrinsic plagiarism detection. It is to be assumed that by combining existing
techniques like n-grams, word-n-grams, sentence lengths or machine learning
algorithms with the Plag-Inn algorithm, the accuracy can be improved. Es-
pecially approaches that analyze the vocabulary (richness) of the document
should be incorporated, as currently the usage of concrete words is completely
ignored.

Finally, experiments using other state-of-the-art test sets should be performed
to solidify the performance of the algorithms.
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CHAPTER 3

Authorship Attribution

3.1. Introduction

The increasing amount of documents available from sources like publicly avail-
able literary databases often raises the question of verifying disputed author-
ships or assigning authors to unlabeled text fragments. As the original prob-
lem was initiated already in the midst of the 20" century by Mosteller and
Wallace, who tried to find the correct authorships of The Federalist Papers
[119] (for details see Sections 3.5.1 and 6.2), authorship attribution is still a
major research topic. Especially with latest events in politics and academia,
the verification of authorships becomes increasingly important.

Similar to the intrinsic plagiarism algorithms presented in Chapter 2, which
aim to find text fragments not written but claimed to be written by an author,
the problem of traditional authorship attribution is defined as follows: Given

IThis chapter is based on and contentual partly reused from the paper: M. Tschuggnall and
G. Specht. Enhancing authorship attribution by utilizing syntaz tree profiles. In Proceedings
of the 14th Conference of the European Chapter of the Association for Computational Lin-
guistics (EACL), Gothenburg, Sweden, April 2014, volume 2: Short Papers, pages 195-199.
Association for Computational Linguistics. [190]



3. Authorship Attribution

several authors with text samples for each of them, the question is to label a
previously unseen document with the correct author. In contrast to the latter
closed-class problem, a more difficult task is addressed in the open-class prob-
lem, where additionally a "non-of-them”-answer is allowed. The difficulties of
the latter result from the problem that dynamic thresholds have to defined
or algorithmically determined, that decide whether the text is written by one
of the candidates or not. In other words, defining globally valid thresholds is
not sufficient, because they depend on the (previously unknown) set of candi-
dates. An even harder definition of the open-class problem, which is sometimes
used and which implies outside-world knowledge, can be summarized in the
following question: ”Here is a document, tell me who wrote it.” [80]

Basically the two main approaches are called profile-based and instance-based
[168], whereby the former concatenate all available text samples per author
and calculate a single profile according to a predefined set of features, and
the latter process individual instances per text one-at-a-time in order to build
an attribution model. The majority of algorithms are profile-based, but also
instance-based approaches are meaningful, especially in cases when an au-
thor writes in different genres that cannot be compared or concatenated (e.g.
Goethe wrote lyric, prosa or epic poetry but also scientific texts on the the-
ory of colors). Both approaches frequently apply classification algorithms like
support vector machines (e.g. [167, 154]), maximum entropy machine learn-
ers (e.g. [178]) or neural networks (e.g. [194]) to learn from samples and to
predict the final answer.

In this thesis a novel profile-based approach for the traditional, closed-class
authorship attribution task is presented. It recapitulates the ideas that are
implemented in the previously shown intrinsic plagiarism detection algorithms
and therefore incorporates the assumption that different authors have different
writing styles - in terms of the grammar structure - and that this style is used
mostly unconsciously. As depicted earlier, due to the fact that an author
has many different choices of how to formulate a sentence using the existing
grammar rules of a natural language, the assumption is that an analysis of the
sentence construction is sufficient to distinguish between individual authors.
For example, the famous Shakespeare quote ”To be, or not to be: that is
the question.” could have been also formulated differently like it is shown in
Figure 3.1. The main idea of this approach is to quantify those differences
by calculating grammar profiles for each candidate author as well as for the
unlabeled document, and to assign one of the candidates as the author of the
unlabeled document by comparing the profiles. To quantify the differences
between profiles, multiple metrics have been implemented and evaluated.
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Figure 3.1.: Grammar Trees of Variations of a Shakespeare Quote.

The rest of this chapter is organized as follows: Section 3.2 sketches the main
idea of the algorithm, which uses the distance metrics explained in Section
3.3 as well as the machine learning algorithms described in Section 3.4. An
extensive evaluation using both the metrics and the classifiers on three different
test sets is shown in Section 3.5. A comparison on the performance of the two
approach variants is given in Section 3.6, and finally Section 3.7 concludes and
discusses future work.
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3.2. Algorithm

The number of choices an author has to formulate a sentence syntactically
is rather high, and the main assumption followed in this thesis is that the
concrete choice is made mostly intuitively and unconsciously. Therefore, by
incorporating the promising results of the PQ-Plag-Inn algorithm, the basic
idea has been modified and enhanced so that it can be applied to traditional
authorship attribution. Evaluations shown in Section 3.5 reenforce that solely
grammar syntax represents a significant feature that can be used to distinguish
between authors.

Globally, the approach comprises the following three steps:
1. Creating a grammar profile for each author.
2. Creating a grammar profile for the unlabeled document.
3. Assigning an author to the document by

a) Calculating the distance between each author profile and the docu-
ment profile and assigning the author having the lowest distance or
the highest similarity, depending on the metric chosen (see Section
3.3).

b) Using the author profiles to train classification algorithms and using
the document profile to make a machine learning prediction (see
Section 3.4).

Calculating Grammar Tree Profiles

One key criterion of the algorithm is the creation of author profiles which are
used as a basis to predict authorships. In order to calculate a grammar profile
for an author or a document, a similar procedure like it has been used for the
PQ-Plag-Inn variant is applied:

1. Concatenate all text samples (of one genre) for the author into a single,
large sample document.

2. Split the resulting document into single sentences and calculate a full
parse tree for each sentence.

3. Calculate the pg-gram index for each sentence and compose the final
grammar profile from the normalized frequencies of pg-grams.
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As this approach is profile-based, a single document is created by concatenat-
ing all text samples of an author, which serves as a basis for further analyses.
On the other hand, for the unlabeled document nothing has be concatenated,
and it serves as it is for subsequent computations.

In traditional authorship attribution there usually exist several text samples
per author, whereby a recent study found out that ”the minimal amount
of textual data needed for reliable authorship attribution turned out to be
method-independent” [39]. Disregarding the language, the authors state that
e.g. for modern novels the minimal amount per author should be around 5,000
words, but also that too much training data leads to worse results. Considering
these results, the approach presented in this chapter uses respective data sets,
which are shown in Section 3.5.

As a standard procedure, every document is at first cleaned to contain al-
phanumeric characters and punctuation marks only. Then it is split into sin-
gle sentences and grammatically parsed like it has been shown earlier with
other algorithms. Further on the pg-gram index is calculated for each sen-
tence, which contains all occurring pg-grams of the parse tree. Like it is done
in Section 2.6 for the PQ-Plag-Inn algorithm, a pg-gram profile is computed
which contains the mostly used pg-grams of an author and the corresponding
number of occurrences, which is normalized by the total number of all appear-
ing pg-grams. As an example, the three mostly used pg-grams of a sample
document together with their normalized frequencies are {[NP-NN-*-*-x],
2.7%}, {[PP-IN-*-*-*], 2.3%}, and { [NP-DT-*-*-*], 2.0%}. The final pq-
gram profile then again consists of the complete table of pg-grams and their
occurrences in the given document.

With the use of the grammar tree profiles calculated for each candidate author
as well as for the unlabeled document, the last part is to predict the correct
author. In order to do this, two approaches have been evaluated: First, a
distance or similarity, respectively, is calculated for each candidate author
profile and the document profile using different metrics. In this case, the
document in question is simply labeled with the author of the best matching
profile. Second, machine learning algorithms are trained using the author
profiles, and utilized to assign one of the candidate authors to the document.

In the following sections these two methods are explained in detail.
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Figure 3.2.: Overview of the Authorship Attribution Approach Using Distance
Metrics.

3.3. Distance and Similarity Metrics

The main idea using different distance and similarity metrics to quantify the
amount of conformance between author profiles and the document profile is
illustrated in Figure 3.2. For each author, all known text samples are concate-
nated and transformed into a pg-gram profile. Likewise a profile is calculated
for the unlabeled document. The key idea is now to calculate differences be-
tween the profiles by utilizing different metrics, and to choose the author with
the best matching profile, i.e., the profile with the lowest distance in case of
a distance-metric or the profile with the highest similarity value in case of a
similarity metric, respectively.

Formally, this procedure could be written as follows: Given the grammar
profiles P, ..., P, corresponding to authors A1, ..., A, and the document profile
Pp, the document is labeled with author A, if

dpzpr = mz’n(dplpr, ceny dpn’pD)
if the metric used calculates distances

8Py, Pp = max(sPhpD, - SPmPD)
if the metric used calculates similarities
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where dp, p, represents the distance between author profile P, and the doc-
ument profile Pp, and sp, p, represents the similarity between those profiles,
respectively.

To investigate on the best distance or similarity metric to be used for this
approach, several well-known metrics? for this problem have been adapted
and evaluated. Subsequently the metrics are shown in detail.

CNG

This metric was proposed by Keselj et al. [86] for comparing common n-grams
(CNG) of two profiles by calculating the dissimilarity as follows:

dp,,pp =

5> (2<fx<p)—fD<p>>)2
fﬂc(p) + fD(p)

pEPIUPD

where f.(p) and fp(p) denote the normalized frequencies of occurrences of
pg-gram p in author profile P, and the document profile Pp, respectively. For
example, given the toy profiles (of pg-grams with p=¢=1)

-oramn 7
pg-gram fa: [%] Pa-g fD [ 0]
P G S-NP 10
P, = Pp =| s-vp 20
NP-NP 50
NP-VP 35 NP-NP 30
NP-VP 40

the distance can be calculated as follows:

2The metric names are only used as a reference, but are not originally proposed like this by

the authors.
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~(2(£o(8-NP) - fp(S-NP))\* [ 2(fo(NP-NP) - fp(WP-NP)) "
_( fz(S=NP) + fp(S-NP) ) +( fo(NP-NP) + fp(NP-NP) )

(%ﬁmwwrvmmwmuQ(xﬁ@wm—mwmeQ
+ +
fx(NP-VP) + fD(NP-VP) fx(S-VP) + fD(S-VP)

_ (2(15— 10))2 . (2(50—30))2 . (2(35—40))2 . (2(0—20))2

15+ 10 50 + 30 35+ 40 0+20
=0.16 +0.25+0.02+4=4.43

Stamatatos-CNG

A variation of the latter dissimilarity function was proposed by Stamatatos
[169] to reduce the problem that often test corpora are imbalanced. Therefore
it uses only the n-grams (pg-grams) that are present in the unseen document’s
profile:

) 2(f.(p) - fo () \*
drero = 2, ( f+(p) + fo(p) )

pePp

Stamatatos-CNG-CN

The following adaption also proposed by Stamatatos [166] results in a non-
symmetric function that additionally introduces a corpus norm N, which is
the concatenation of all samples of all candidate authors:

p E:(2<ﬁxp>—fD@»>y?(2<ﬂxp>—fN@»>)2
o fa(p) + fp(p) Jo(p) + fn(p)

pePp

Here, fn(p) represents the relative frequency of occurrence of the pg-gram p
in the corpus norm N.
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Sentence-SPI

Originally proposed by Frantzeskou et al. in the context of source code au-
thor identification [48] using n-grams, the simplified profile intersection (SPI)
similarity metric simply counts the amount of common n-grams of the author
profile and the document profile, whereby non-common n-grams are ignored:

1 ifpeP
SP:L‘7PD = Z { 0 else ’
pePp

According to the idea of this thesis to analyze sentences, the SPI score has been
modified for this approach so that each sentence of the unlabeled document is
traversed separately. Let Sp be the set of sentences of the document and I(s)
the pg-gram index of sentence s, then the Sentence-SPI score is calculated as
follows:

1 ifpeP,
- % 3
b 5e5 pel(s) 0 else

3.4. Machine Learning Algorithms
3.4.1. Utilized Classifiers

A different way to predict authorships is the utilization of state-of-the-art
machine learning algorithms. As shown in Figure 3.3 the general method is
to use the profiles of the candidate authors to train the respective classifiers.
Then, given the profile of the unseen document, the algorithms are asked to
make a prediction of authorship.

In particular, the following classifiers have been utilized using the WEKA
toolkit as a general framework [67]:

e Naive Bayes classifier [78]

Bayes Network using the K2 classifier [34]

Large Linear Classification using LibLinear [45]

Support vector machines using LIBSVM with nu-SVC classification [29]

e A k-nearest-neighbors classifier (kNN) using k =1 [4]
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Figure 3.3.: Overview of the Authorship Attribution Approach Using Machine
Learning Algorithms.

e Pruned C4.5 decision tree (J48) [148]

For each classification algorithm the most commonly used parameter configu-
ration has been chosen for the evaluation.

3.4.2. Features

Basically, every pg-gram including the frequency of occurrence represents a
feature that is used as input to train the classifiers. Depending on the size
of the document, the number of distinct features, i.e., pg-grams, range be-
tween 1,000 and 15,000. In addition, the profile is sorted descending by the
normalized occurrence, and an additional rank value is introduced that simply
defines a natural order. For example, Table 3.1 shows the most frequently used
pg-grams (with p = 2,¢ = 2) of the conclusion chapter of this thesis®. Both
the occurrence rate and the rank are used as input features for classification

algorithms, as well as a combination of both.

3Note that the sentence tag S is not among the five mostly used pq-grams, which results from
the rather long sentences as a stylistic characteristic of the author of this thesis.
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pqg-gram Occurrence [%] | Rank
NP-NN-*—x* 4.07 1
NP-DT—*—x* 2.94 2
NP-NNS-*-* 2.90 3
PP-IN-*-% 2.56 4
NP-JJ—-%-x% 2.18 5}

Table 3.1.: Example of the Five Mostly Used pg-grams of the Conclusion
Chapter of this Thesis.

In order to use the rank value as input for machine learning algorithms, re-
spective features are created by appending the original pg-gram with the token
--RANK. A small excerpt of a complete feature list is depicted in Table 3.2.
Moreover, if a document does not contain a specific feature, i.e., a pg-gram,
the feature value for the pg-gram as well as for the corresponding rank is set
to —1. In case of the example given in Table 3.2, author C didn’t use the
structure [PP-IN-*-*-%] to build his/her sentences, and thus the according
feature values are set to —1.

Feature Author A | Author B | Author C
NP-NN-*-x% 4.07 1.89 2.84
NP-NN-*-*—--RANK 1 6 2
NP-DT-*-% 2.94 0.24 -1
NP-DT-*-*-RANK 2 153 -1
NP-NNS-*-x% 2.90 2.11 1.23
NP-NNS-*-*x-RANK 3 2 11

Table 3.2.: Example of a Feature List Serving as Input for Classification Al-
gorithms.

3.5. Evaluation

The authorship attribution approach using grammar analysis has been exten-
sively evaluated using different unrelated data sets, which are described in
Section 3.5.1. Moreover, the algorithm using the distance metrics has been
optimized by introducing and adapting several parameters. The optimization
and the final results using the distance metrics with the adjusted parameter
settings are shown in Section 3.5.2, and the results gained from the utilization
of the machine learning algorithms are presented in Section 3.5.3.
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Task | Candidate Authors | Docs (Train) | Docs (Test) | Words/Doc
A 3 2 6 1800-6060
B 3 2 6 1800-6060
C 8 2 8 up to 13000
D 8 2 8 up to 13000

Table 3.3.: Statistics of the PAN12 Corpus.

3.5.1. Test Data Sets

Three different English data sets have been chosen to evaluate the approach,
whereby all sets are completely unrelated and of different types. In case of the
variant using distance metrics, one of the data sets has been used to train the
algorithm, i.e. to optimize parameters, while the remaining sets have been used
as test sets. On the other hand, for the machine learning algorithms that are
not depending on parameters, each data set has been evaluated individually.

The PAN’12 competition corpus (PAN12)

As a well-known, state-of-the-art corpus especially created for the use in au-
thorship identification, parts of the PAN2012 corpus [81] have been integrated.
The corpus is composed of several fiction texts and split into several subtasks
that cover small- and common-length documents (1800-6060 words) as well

as larger documents (up to 13000 words) and novel-length documents (up to
170,000 words).

For each subtask of the original workshop competition the number of authors
are different, numbering from three up to eight candidate authors that have
to be labeled on six up to eight unseen documents. Corresponding to every
author present in the data set, separate samples are provided. The PAN 2012
corpus also includes open-class tasks, which have been removed from the set
as this thesis addresses only closed-class attribution.

Concretely, the data from the tasks as shown in Table 3.3 of the original
competition have been used and modified (open-class documents have been
removed).

The 2004-competition corpus (CC04)

From the data set originally created for the Ad-hoc-Authorship Attribution
Competition workshop [82] held in 2004*, the training set has been used. It
consists of eight chapters of novels written by Anne, Charlotte and Emily

*http://www.mathcs.duq.edu/~juola/authorship_contest.html, visited Oct. 2013
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Bronte and an additional candidate author that is not present in the text
samples (i.e. the latter should not be labeled to any of the documents).

For each author, a sample document of about 2,500 words is given, and the
size of the eight documents to be labeled range from about 1,500 to 2,500
words.

The Federalist Papers (FED)

Probably the mostly referred text corpus in the field of authorship attribution
is a series of 85 political essays called ” The Federalist Papers” written by John
Jay, Alexander Hamilton and James Madison in the 18th century. While most
of the authorships are undoubted, many works have studied and questioned
the correct authorship of 12 disputed essays [119].

Although there is a common opinion on the authorship of the latter essays,
an amount of uncertainty remains. Therefore, the disputed essays have been
removed for the evaluation. Additionally, three essays co-written by two of
the authors have also been discarded as this would be a multi-class problem
which is not addressed in this approach.

To build the author profiles the first three documents written by each author
have been concatenated (paper numbers {1, 6, 7} for Hamilton, {2, 3, 4} for
Jay and {10, 14, 37} for Madison). These documents were also excluded for
the evaluation, resulting in an overall set of 61 documents to be attributed.
Thereby the amount of words per document ranges from 900 up to 3,500.

3.5.2. Distance Metrics Results

Parameter Optimization

The algorithm using the distance metrics depends on several parameters that
have been optimized to gain the best results. Basically the most important
parameters are the selection of the distance or similarity metric as well as the
size of pg-grams, i.e., the length of the stem p and the base ¢. By choosing
large values for the latter the grammar structure becomes more important,
whereas on the other side low values result in less structure information (e.g.
by choosing p = 1 and g = 0 the pg-grams of a grammar profile are equal to
the POS tag which provides no structure data at all).

Besides the metric and values for p and ¢, two additional optimization variables
have been integrated for the similarity metric Sentence-SPI:
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3. Authorship Attribution

o topPQGramCount ¢.: by assigning a value to this parameter, only the
corresponding amount of mostly used pg-grams of a grammar profile are
used. For example, by setting t. = 100 only the hundred mostly used
pg-grams of the author profiles as well as of the document profile are
used.

¢ topPQGramOffset t,: based on the idea that all authors might have
a frequently used and common set of syntax rules that are predefined
by a specific language, this parameter allows to ignore the given amount
of mostly used pg-grams. For example if ¢, = 3 in Table 3.1, the three
mostly used pg-gram patterns are ignored by the individual metrics, i.e.
the first pg-gram to be used would be [NP-NNP—*—*-x*].

If a common set of grammar rules exists, this parameter helps to optimize
the algorithm by reducing the blur emerging from these rules, and helps
to focus on actual differences between authors. As evaluations indicate,
a common set indeed exists - at least for the evaluated English language.

For each of the parameters different values have been tested, and all resulting
permutations of variable assignments have been used for the evaluation. The
concrete assignments are shown in the Table 3.4.

Param. Range

P, q [0,...,6] (p=0,q =0 is excluded)
t [-,5,10,15,...,200]

to [-,3,5,10,15,20,25,30]

Table 3.4.: Configuration Ranges for Parameter Optimization.

Results

The evaluation results are shown in Table 3.5. It shows the rate of correct
author attributions based on the grammar feature presented in this paper.
Therefore three different evaluations have been made using all three data sets
as optimization sets: i.e. one of the data sets has been chosen to optimize the
algorithm, and the remaining ones have been evaluated with the optimized
configurations.

For each table the best result for each distance metric is listed, and for the
similarity metric Sentence-SPI the best three results are shown as there are
more parameters to be optimized on one side, and additionally this metric
produced the best score on the other side. All optimization sets could be
optimized very well, headed by the CC04 set with a 100% rate of correct
author attributions and followed by the Federalist Papers with 95%.

72



3.5. Evaluation

100
90
80

S
% 70 accos
g QFED
2 50
£ 10 OPAN12
:é 30 WOverall
8 20

10

’ CNG Stamatatos-CNG Stamatatos-CNG-CN Sentence-SPI

Figure 3.4.: Authorship Attribution: Distance Metrics Results.

Composed by the average correct attribution rate of the remaining test sets,
the overall results are shown in the last two columns, where the latter in-
cludes the optimized data set. Generally, the algorithm worked best using the
Sentence-SPI score, which led to a correct-rate of 73% by using the PAN12
data set for optimization. The optimal configuration uses p = 3 and ¢ = 2,
which is the same configuration that was used in [12] (for identifying and
mapping street names) to produce the best results.

It can be seen that the highest scores are gained by using a limit of top
pg-grams (t. ~ 65) and by ignoring the first three pg-grams (¢, = 3), which
indicates that it is sufficient to limit the number of syntax structures and that
there exists a certain number (3) of general grammar rules for English which
are used by all authors. Consequently those rules cannot by used to infer
information about individual authors (for example every sentence starts with

[s-...1).

Moreover, all results are better using the PAN12 data set for optimization,
which may be because this set is the most heterogeneous one: The Federalist
Papers contain only political essays written some time ago, and the CC04 set
only uses literary texts written by four authors.

Finally, an overview of the best performances by each distance metric is illus-

trated in Figure 3.4.

3.5.3. Machine Learning Results

Using the same data sets, the approach idea has been evaluated with the
specified classifiers and feature sets. In particular, the feature sets

e OCCURRENCE-RATE (concrete percentages of pg-gram occurrences)

73



3. Authorship Attribution

metric P q t t, | FED (Opt.) | PAN12 CC04 Overall | Overall Opt.
Sentence-SPI 4 0 65 3 95.08 48.91 14.29 31.60 52.76
Sentence-SPI 3 2 70 3 90.16 57.04 57.14 57.09 68.11
Sentence-SPI 3 2 65 3 86.89 63.79 57.14 60.46 69.27
Stamatatos-CNG 2 2 - - 81.97 46.53 14.29 30.41 47.60
Stamatatos-CNG-CN 0 2 - - 85.25 32.54 14.29 23.42 44.03
CNG 0 2 - - 81.97 29.76 14.29 22.03 42.01
(a) Results Using FED for Optimization.
metric p 4a t t, | PAN12 (Opt.) | FED CC04 Overall | Overall Opt.
Sentence-SPI 3 6 90 10 87.50 70.49 28.57 49.53 62.19
Sentence-SPI 3 2 65 3 76.04 86.89 57.14 72.02 73.36
Sentence-SPI 3 3 60 10 68.75 83.61 57.14 70.38 69.83
Stamatatos-CNG 2 3 - - 60.42 78.69 14.29 46.49 51.13
CNG o 2 - - 57.29 80.33  14.29 47.31 50.6/
Stamatatos-CNG-CN 4 5 - - 64.58 3.28 42.86 23.07 36.91
(b) Results Using PAN12 for Optimization.

metric P q ¢t t, | CC04 (Opt.) | FED PAN12 Overall | Overall Opt.
Sentence-SPI 2 5 55 5 100.0 63.93 46.23 55.08 70.05
Sentence-SPI 2 5 35 25 100.0 60.66 29.27 44.96 63.31
Sentence-SPI ) 0 45 3 85.71 67.21 47.13 57.17 66.68
Stamatatos-CNG 1 4 - - 71.43 54.10 23.51 38.81 49.68
Stamatatos-CNG-CN 1 4 - - 42.86 52.46 19.64 36.05 38.32
CNG 1 2 - - 57.14 18.03 27.98 23.00 34.88

(¢) Results Using FED for Optimization.

Table 3.5.: Evaluation Results in Percent By Using Distance Metrics and Different Data Sets For Parameter Optimization.
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e RANK (position in descending ordered list of pg-gram occurrences), and
e ALL (combination of both)

have been evaluated. As with the distance metric evaluation, for each data
set the corresponding known text samples of each author have been used to
train the classifiers, while the remainder has been used for testing.

Incorporating the functioning of machine learning algorithms, the previously
shown optimization using the two parameters t. and ¢, has not been used in
this case. It can be assumed that the classification algorithms optimize these
parameters implicitly by automatically selecting and deselecting individual
features in order to produce optimal results. Nevertheless, concrete attribute
selection algorithms [65] like best-first, branch-and-bound, simulated anneal-
ing [106] or greedy algorithms [28] have not been utilized for this evaluation,
but should be addressed in future work.

A complete list of results evaluating the classifiers with pg-gram settings of
2<p<4and 2 < q <4 are presented in Table 3.6 for the 0CCURRENCE-RATE
feature set, in Table 3.7 for the RANK feature set and in Table 3.8 for the ALL
feature set, respectively. In each table the three best results are highlighted.

Generally, the ALL feature set achieved the best results, followed by the RANK
and OCCURRENCE-RATE feature sets. With an overall accuracy of 76.9% the
classification worked best by using the LibLinear classifier with all features
and p = 2,q = 4, outperforming the distance metric results by approximately
4%. In all three evaluations the linear classifier as well as the support vector
machine classifier worked best, whereas the decision tree produced the worst
results. The general poor performance of decision trees in the field of author-
ship attribution has also been confirmed in a comparative study using many
different features [204].

Like it is the case in the previously shown distance metric evaluation, the clas-
sification using the grammar profiles works very well for the Federalist Papers
and PAN12 data sets, but lacks of predicting the CC04 data set. For example,
the best configuration achieved 90.0% for the Federalist Papers and 96.9% for
the PAN12 data set, respectively, but reached only 42.9% for CC04. It can
be seen in Table 3.8 that the individual data sets - except CC04 - could be
classified very well: The linear classifier could attribute 97% of the Federalist
papers correctly, and kNN could even classify 100% of the PAN12 data set
correctly (i.e. all four subtasks could be attributed completely correct).

An overview of the classification algorithms and their performance on the
respective data sets is depicted in Figure 3.5.
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PAN12
Classifier p q | CCo4 FED A B C D Avg | Overall
kNN 2 2 28.6 71.2 100.0  100.0 87.5 100.0 96.9 65.6
Naive Bayes 2 2 28.6 78.8 33.3 33.3 62.5 87.5 54.2 53.8
BayesNet 2 2 28.6 80.8 33.3 33.3 62.5 87.5 54.2 54.5
LibLinear 2 2 28.6 81.4 50.0 66.7 75.0 87.5 69.8 59.9
LibSVM 2 2 14.3 80.0 50.0 66.7 75.0 87.5 69.8 54.7
J48 2 2 57.1 77.5 33.3 33.3 12.5 12.5 22.9 52.5
kNN 2 3 28.6 75.8 100.0 100.0 87.5 100.0  96.9 67.1
Naive Bayes 2 3 42.9 82.6 33.3 33.3 62.5 62.5 47.9 57.8
BayesNet 2 3 42.9 85.9 33.3 33.3 62.5 75.0 51.0 59.9
LibLinear 2 3 42.9 87.1 100.0  83.3 62.5 87.5 83.3 71.1
LibSVM 2 3 28.6 84.5 100.0 83.3 62.5 75.0 80.2 64.4
J48 2 3 14.3 83.3 33.3 33.3 12.5 12.5 22.9 40.2
kNN 2 4 14.3 84.8 100.0 100.0  87.5 87.5 93.8 64.3
Naive Bayes 2 4 42.9 88.6 33.3 33.3 75.0 50.0 47.9 59.8
BayesNet 2 4 42.9 89.4 33.3 33.3 75.0 50.0 47.9 60.1
LibLinear 2 4 42.9 89.8 100.0 100.0 62.5 62.5 81.3 71.3
LibSVM 2 4 28.6 86.7 100.0 100.0 62.5 75.0 84.4 66.5
J48 2 4 42.9 85.9 33.3 33.3 12.5 12.5 22.9 50.5
kNN 3 2 28.6 77.3 100.0  83.3 87.5 87.5 89.6 65.1
Naive Bayes 3 2 42.9 85.6 33.3 33.3 62.5 62.5 47.9 58.8
BayesNet 3 2 28.6 87.4 33.3 33.3 62.5 62.5 47.9 54.6
LibLinear 3 2 42.9 88.3 83.3 83.3 75.0 87.5 82.3 71.1
LibSVM 3 2 28.6 85.5 66.7 83.3 75.0 75.0 75.0 63.0
J48 3 2 71.4 83.8 33.3 33.3 25.0 37.5 32.3 62.5
kNN 3 3 28.6 81.8 100.0 100.0 87.5 100.0  96.9 69.1
Naive Bayes 3 3 42.9 87.1 33.3 33.3 62.5 87.5 54.2 61.4
BayesNet 3 3 42.9 89.4 33.3 33.3 62.5 87.5 54.2 62.1
LibLinear 3 3 42.9 89.4 66.7 83.3 62.5 87.5 75.0 69.1
LibSVM 3 3 42.9 86.4 66.7 66.7 75.0 87.5 74.0 67.7
J48 3 3 14.3 83.8 33.3 33.3 12.5 25.0 26.0 41.4
kNN 3 4 42.9 78.8 83.3 83.3 87.5 87.5 85.4 69.0
Naive Bayes 3 4 42.9 84.1 33.3 33.3 75.0 87.5 57.3 61.4
BayesNet 3 4 42.9 85.9 33.3 33.3 75.0 87.5 57.3 62.0
LibLinear 3 4 57.1 87.5 50.0 100.0 75.0 87.5 78.1 74.3
LibSVM 3 4 42.9 84.8 50.0 83.3 75.0 87.5 74.0 67.2
J48 3 4 14.3 85.6 33.3 33.3 37.5 25.0 32.3 44.1
kNN 4 2 28.6 77.3 100.0  83.3 62.5 100.0  86.5 64.1
Naive Bayes 4 2 57.1 81.8 33.3 33.3 50.0 62.5 44.8 61.3
BayesNet 4 2 57.1 83.3 33.3 33.3 50.0 62.5 44.8 61.8
LibLinear 4 2 42.9 84.8 66.7 66.7 50.0 75.0 64.6 64.1
LibSVM 4 2 57.1 82.7 | 83.3 66.7 62.5 100.0 78.1 72.7
J48 4 2 57.1 81.8 33.3 33.3 12.5 37.5 29.2 56.0
kNN 4 3 42.9 78.8 83.3 100.0 75.0 75.0 83.3 68.3
Naive Bayes 4 3 57.1 83.3 33.3 33.3 50.0 62.5 44.8 61.8
BayesNet 4 3 71.4 84.3 33.3 33.3 50.0 75.0 47.9 67.9
LibLinear 4 3 71.4 84.8 | 50.0 83.3 50.0 75.0 64.6 73.6
LibSVM 4 3 57.1 82.7 66.7 83.3 62.5 75.0 71.9 70.6
J48 4 3 14.3 81.6 33.3 33.3 25.0 25.0 29.2 41.7
kNN 4 4 42.9 84.8 66.7 83.3 75.0 87.5 78.1 68.6
Naive Bayes 4 4 57.1 86.4 33.3 33.3 75.0 62.5 51.0 64.8
BayesNet 4 4 57.1 86.9 33.3 33.3 62.5 62.5 47.9 64.0
LibLinear 4 4 57.1 87.5 50.0 83.3 62.5 75.0 67.7 70.8
LibSVM 4 4 57.1 84.8 50.0 83.3 62.5 75.0 67.7 69.9
J48 4 4 71.4 82.6 33.3 33.3 25.0 25.0 29.2 61.1

Table 3.6.: Evaluation Results in Percent By Utilizing Classifiers With the
Occurence-Rate Feature Set.
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PAN12
Classifier p q | CC04 FED A B C D Avg | Overall
kNN 2 2 14.3 74.2 100.0 100.0 100.0 100.0 100.0 62.8
Naive Bayes 2 2 42.9 81.1 33.3 33.3 87.5 75.0 57.3 60.4
BayesNet 2 2 28.6 83.8 33.3 33.3 87.5 75.0 57.3 56.6
LibLinear 2 2 42.9 86.7 | 100.0 100.0 &87.5 100.0 96.9 75.5
LibSVM 2 2 42.9 84.2 | 100.0 100.0 87.5 100.0 96.9 74.7
J48 2 2 42.9 81.8 33.3 33.3 12.5 12.5 22.9 49.2
kNN 2 3 14.3 80.3 100.0 100.0 100.0 100.0  100.0 64.9
Naive Bayes 2 3 28.6 85.6 33.3 33.3 87.5 100.0 63.5 59.2
BayesNet 2 3 28.6 87.4 33.3 33.3 87.5 100.0 63.5 59.8
LibLinear 2 3 28.6 89.0 100.0 100.0 87.5 100.0 96.9 71.5
LibSVM 2 3 28.6 86.1 100.0 100.0 87.5 100.0 96.9 70.5
J48 2 3 28.6 82.8 33.3 33.3 12.5 12.5 22.9 44.8
kNN 2 4 14.3 87.9 100.0 100.0 100.0 100.0  100.0 67.4
Naive Bayes 2 4 28.6 89.4 33.3 33.3 75.0 87.5 57.3 58.4
BayesNet 2 4 28.6 89.9 33.3 33.3 75.0 87.5 57.3 58.6
LibLinear 2 4 28.6 90.5 100.0 100.0 87.5 100.0 96.9 72.0
LibSVM 2 4 28.6 87.3 100.0 100.0 87.5 100.0 96.9 70.9
J48 2 4 28.6 84.8 33.3 33.3 25.0 12.5 26.0 46.5
kNN 3 2 28.6 77.3 100.0 100.0  100.0 87.5 96.9 67.6
Naive Bayes 3 2 42.9 82.6 33.3 33.3 75.0 75.0 54.2 59.9
BayesNet 3 2 42.9 84.3 33.3 33.3 75.0 75.0 54.2 60.5
LibLinear 3 2 28.6 86.4 100.0 83.3 87.5 100.0 92.7 69.2
LibSVM 3 2 14.3 83.9 100.0 83.3 87.5 87.5 89.6 62.6
J48 3 2 85.7 81.6 33.3 33.3 37.5 12.5 29.2 65.5
kNN 3 3 28.6 80.3 100.0 100.0 87.5 100.0 96.9 68.6
Naive Bayes 3 3 42.9 84.8 33.3 33.3 75.0 87.5 57.3 61.7
BayesNet 3 3 42.9 86.4 33.3 33.3 75.0 87.5 57.3 62.2
LibLinear 3 3 28.6 87.9 100.0 100.0 87.5 100.0 96.9 71.1
LibSVM 3 3 28.6 85.2 100.0 100.0 87.5 100.0 96.9 70.2
J48 3 3 28.6 82.8 33.3 33.3 25.0 25.0 29.2 46.9
kNN 3 4 28.6 77.3 83.3 100.0  100.0 87.5 92.7 66.2
Naive Bayes 3 4 42.9 84.8 33.3 33.3 75.0 75.0 54.2 60.6
BayesNet 3 4 42.9 86.9 33.3 33.3 75.0 75.0 54.2 61.3
LibLinear 3 4 28.6 88.6 100.0 100.0 87.5 87.5 93.8 70.3
LibSVM 3 4 28.6 85.8 100.0 100.0 87.5 87.5 93.8 69.4
J48 3 4 14.3 83.3 33.3 33.3 37.5 37.5 35.4 44.3
kNN 4 2 28.6 74.2 83.3 100.0 87.5 75.0 86.5 63.1
Naive Bayes 4 2 42.9 81.8 33.3 33.3 50.0 75.0 47.9 57.5
BayesNet 4 2 42.9 84.3 33.3 33.3 50.0 75.0 47.9 58.4
LibLinear 4 2 28.6 85.6 66.7 100.0 75.0 75.0 79.2 64.4
LibSVM 4 2 28.6 83.3 33.3 83.3 75.0 87.5 69.8 60.6
J48 4 2 57.1 84.1 33.3 33.3 12.5 0.0 19.8 53.7
kNN 4 3 42.9 78.8 83.3 100.0 87.5 75.0 86.5 69.4
Naive Bayes 4 3 42.9 85.6 33.3 33.3 75.0 75.0 54.2 60.9
BayesNet 4 3 42.9 87.9 33.3 33.3 75.0 75.0 54.2 61.6
LibLinear 4 3 42.9 88.6 50.0 100.0 75.0 75.0 75.0 68.8
LibSVM 4 3 42.9 85.8 33.3 100.0 87.5 75.0 74.0 67.5
J48 4 3 14.3 83.3 33.3 33.3 25.0 37.5 32.3 43.3
kNN 4 4 14.3 77.3 83.3 83.3 87.5 75.0 82.3 58.0
Naive Bayes 4 4 42.9 84.8 33.3 33.3 75.0 75.0 54.2 60.6
BayesNet 4 4 57.1 86.9 33.3 33.3 75.0 75.0 54.2 66.1
LibLinear 4 4 42.9 88.6 66.7 83.3 75.0 75.0 75.0 68.8
LibSVM 4 4 42.9 85.8 50.0 83.3 87.5 75.0 74.0 67.5
J48 4 4 71.4 83.6 33.3 33.3 37.5 12.5 29.2 61.4

Table 3.7.: Evaluation Results in Percent By Utilizing Classifiers With The
Rank Feature Set.
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PAN12
Classifier p q | CC04 FED A B C D Avg | Overall
kNN 2 2 42.9 74.2 100.0 100.0 100.0 100.0 100.0 72.4
Naive Bayes 2 2 14.3 74.2 83.3 83.3 87.5 50.0 76.0 54.8
BayesNet 2 2 28.6 86.4 33.3 33.3 87.5 87.5 60.4 58.5
LibLinear 2 2 28.6 90.9 100.0 100.0 87.5 100.0 96.9 72.1
LibSVM 2 2 28.6 74.2 83.3 100.0 87.5 100.0 92.7 65.2
J48 2 2 42.9 60.0 33.3 33.3 12.5 12.5 22.9 41.9
kNN 2 3 28.6 78.8 100.0 100.0 100.0 100.0  100.0 69.1
Naive Bayes 2 3 28.6 90.9 83.3 83.3 75.0 62.5 76.0 65.2
BayesNet 2 3 28.6 90.9 33.3 33.3 75.0 75.0 54.2 57.9
LibLinear 2 3 42.9 92.4 | 100.0 100.0 75.0 100.0 93.8 76.4
LibSVM 2 3 42.9 74.2 100.0 100.0 87.5 87.5 93.8 70.3
J48 2 3 28.6 77.3 33.3 33.3 12.5 12.5 22.9 42.9
kNN 2 4 14.3 89.4 100.0 100.0 100.0 100.0  100.0 67.9
Naive Bayes 2 4 42.9 74.2 66.7 100.0 25.0 75.0 66.7 61.3
BayesNet 2 4 28.5 92.4 33.3 33.3 75.0 87.5 57.3 59.4
LibLinear 2 4 42.9 90.9 100.0 100.0 87.5 100.0 96.9 76.9
LibSVM 2 4 42.9 74.2 100.0 100.0 87.5 100.0 96.9 71.3
J48 2 4 28.6 80.3 33.3 33.3 12.5 12.5 22.9 43.9
kNN 3 2 28.6 80.3 100.0 100.0 87.5 87.5 93.8 67.6
Naive Bayes 3 2 42.9 74.2 66.7 83.3 50.0 37.5 59.4 58.8
BayesNet 3 2 42.9 87.9 33.3 33.3 62.5 75.0 51.0 60.6
LibLinear 3 2 28.6 92.4 100.0 83.3 75.0 87.5 86.5 69.2
LibSVM 3 2 28.6 74.2 100.0 83.3 75.0 87.5 86.5 63.1
J48 3 2 85.7 72.7 33.3 33.3 37.5 25.0 32.3 63.6
kNN 3 3 28.5 81.8 100.0 100.0 100.0 100.0  100.0 70.1
Naive Bayes 3 3 42.9 92.4 | 100.0 100.0 62.5 87.5 87.5 74.3
BayesNet 3 3 42.9 92.4 33.3 33.3 62.5 87.5 54.2 63.2
LibLinear 3 3 28.5 92.4 83.3 100.0 75.0 100.0 89.6 70.2
LibSVM 3 3 42.9 74.2 83.3 100.0 87.5 100.0 92.7 69.9
J48 3 3 28.6 80.3 33.3 33.3 25.0 25.0 29.2 46.0
kNN 3 4 28.5 81.8 83.3 100.0  100.0 87.5 92.7 67.7
BayesNet 3 4 42.9 90.9 33.3 33.3 75.0 87.5 57.3 63.7
Naive Bayes 3 4 42.9 74.2 66.7 66.7 62.5 50.0 61.5 59.5
LibLinear 3 4 28.6 97.0 83.3 100.0 75.0 87.5 86.5 70.7
LibSVM 3 4 28.6 74.2 83.3 100.0 87.5 87.5 89.6 64.1
J48 3 4 14.3 83.3 33.3 33.3 37.5 37.5 35.4 44.3
kNN 4 2 28.6 75.8 83.3 83.3 87.5 100.0 88.5 64.3
Naive Bayes 4 2 42.9 74.2 83.3 100.0 37.5 25.0 61.5 59.5
BayesNet 4 2 42.9 89.4 33.3 33.3 50.0 87.5 51.0 61.1
LibLinear 4 2 28.6 87.9 83.3 100.0 75.0 87.5 86.5 67.7
LibSVM 4 2 28.6 74.2 66.7 83.3 75.0 87.5 78.1 60.3
J48 4 2 57.1 81.8 33.3 33.3 12.5 37.5 29.2 56.0
kNN 4 3 42.9 80.3 83.3 100.0 87.5 75.0 86.5 69.9
Naive Bayes 4 3 14.3 74.2 66.7 83.3 50.0 75.0 68.8 52.4
BayesNet 4 3 42.9 92.4 33.3 33.3 62.5 75.0 51.0 62.1
LibLinear 4 3 42.9 89.4 100.0 100.0 75.0 75.0 87.5 73.3
LibSVM 4 3 42.9 74.2 66.7 100.0 75.0 75.0 79.2 65.4
J48 4 3 14.3 72.7 33.3 33.3 25.0 62.5 38.5 41.8
kNN 4 4 28.6 81.8 83.3 83.3 75.0 75.0 79.2 63.2
Naive Bayes 4 4 57.1 74.2 66.6 83.3 75.0 50.0 68.7 66.7
BayesNet 4 4 57.1 90.9 33.3 33.3 75.0 75.0 54.2 67.4
LibLinear 4 4 42.9 89.4 100.0 100.0 62.5 75.0 84.4 72.2
LibSVM 4 4 42.8 74.2 66.7 100.0 75.0 75.0 79.2 65.4
J48 4 4 71.4 75.8 33.3 33.3 37.5 12.5 29.2 58.8

Table 3.8.: Evaluation Results in Percent By Utilizing Classifiers With All
Features.

78



3.6. Comparison of Variants

100
90

~ 80
g
% 70
£ 60 OPANO4
B
'_g 50 BFED
% 40 OPAN12
=
§ 30 MOverall
]
© 20

10

0

kNN Naive Bayes BayesNet LibLinear LibSVM 148

Figure 3.5.: Authorship Attribution: Best Machine Learning Results.

3.6. Comparison of Variants

Both evaluation variants lack of attributing the CC04 set correctly, or at least
at an acceptable rate. Considering that the CC04 data set contains only
eight documents compared to, for example, the over sixty-document Federalist
Papers data set, the calculation of the overall result is decreased significantly
as it averages equally over the individual data set results. The assumption
that the CC04 data set may not be representative, or at least contains some
flaws, is strengthened by evaluations conducted for comparisons presented in
Chapter 5, where it is revealed that the approach performs significantly better
also on other (self-made) test sets. At last, the poor performance on the CC04
set conforms also to the results of other approaches that found the works of
the Bronte sisters - which form the CC04 set - as the hardest to discriminate
[98].

In Table 3.9 the evaluation results are revisited and analyzed by the impact
of the CC04 data set. It shows the ten best performances of the authorship
attribution approach including and excluding the CC04 data set, and discrim-
inates the attribution rate that can be achieved when calculating the overall
score by task and by document. Thereby the score by task is equal to the
previously presented results, i.e., each data set is treated equally, disregarding
the number of documents to be attributed. On the other hand, the attribu-
tion rate by document represents the global attribution rate with respect to
the quantity of unlabeled documents. For example, if the CC04 data set is
included, the overall attribution rate is calculated as follows:

_ T(ltecc'04+7‘at€FED +T'CLt8pAN12
rateigsk = 5
rate _ correctccoatcorrectppp+correctpani2 _ correctccogtcorrectpgpptcorrectp ani2
doc NCCo4+NFED+TNPAN12 8+61+(6+6+8+8)

79
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Overall incl. CC04 | Overall excl. CC04
metric P a t. t, | Opt. For | CC04 FED PAN12 | By Task By Doc | By Task By Doc
Sentence-SPI 3 2 65 3 PAN12 57.14  86.89 76.04 73.36 82.2 81.5 84.4
Sentence-SPI 3 2 65 3 FED 57.14  86.89 76.04 73.36 82.2 81.5 84.4
Sentence-SPI 3 2 70 3 FED 57.14  90.16 67.71 71.67 81.8 78.9 84.0
Sentence-SPI 4 0 65 3 FED 14.29  95.08 57.29 55.55 78.3 76.2 84.1
Sentence-SPI 3 3 60 10 PAN12 57.14  83.61 68.75 69.83 77.9 76.2 79.8
Sentence-SPI 3 6 90 10 PAN12 28.57  70.49 87.50 62.19 72.7 79.0 76.7
Stamatatos-CNG 2 2 - - FED 14.29  81.97 57.29 51.18 70.0 69.6 75.0
CNG 0o 2 - - PAN12 14.29  80.33 57.29 50.64 68.9 68.8 73.9
Stamatatos-CNG 2 3 - - PAN12 14.29  78.69 60.42 51.13 68.8 69.6 73.8
Stamatatos-CNG-CN 0 2 - - FED 14.29  85.25 41.67 47.07 67.5 63.5 72.4

(a) Distance Metric Results Revisited.

Overall incl. CC04 | Overall excl. CC04
Classifier P q Feature Set | CC04 FED PAN12 | By Task By Doc | By Task By Doc
LibLinear 2 3 ALL 42.9 924 93.8 76.4 89.6 93.1 93.9
LibLinear 2 4 ALL 42.9 90.9 96.9 76.9 89.6 93.9 93.8
LibLinear 3 4 ALL 28.6 97.0 86.5 70.7 89.2 91.8 94.8
LibLinear 2 2 ALL 28.6 90.9 96.9 72.1 88.4 93.9 93.8
LibLinear 2 4 RANK 28.6 90.5 96.9 72.0 88.2 93.7 93.6
Naive Bayes 3 3 ALL 42.9 924 87.5 74.3 87.8 90.0 91.9
LibLinear 3 3 ALL 28.5 924 89.6 70.2 87.2 91.0 92.6
LibLinear 2 3 RANK 28.6 89.0 96.9 71.5 87.2 92.9 92.5
kNN 2 4 ALL 14.3 89.4 100.0 67.9 87.2 94.7 93.8
LibLinear 2 2 RANK 42.9 86.7 96.9 75.5 86.9 91.8 91.0

(b) Machine Learning Results Revisited.

Table 3.9.: Evaluation Results Analyzing the Impact of the CC04 Data Set.
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where correctx denotes the number of correct attributions of data set X, and
nx the total number of documents to be attributed on the same data set,
respectively. The score without the CCO04 set is calculated similarly, without
the corresponding variables.

By computing the attribution rate by document, the imbalance in quantity
of the test sets is compensated. Consequently, the overall score is increased
significantly for both the distance metrics comparisons and the machine learn-
ing attributions. As with the calculation by task, the approach evaluated by
number of documents performs better by utilizing classifier algorithms. The
linear classification reaches an attribution rate of 89% when the CC04 data set
is included, and an attribution rate of nearly 94% when it is excluded. Again,
the machine learning classification works best with using all available features
(pg-gram occurrences and ranks) and the pg-gram size of p =2,q = 3.

Likewise, also the distance metrics result is significantly enhanced by inspect-
ing the rate by document. The setting for which the parameters have been op-
timized for PAN12 reaches 82% (including CC04) and 84% (excluding CC04)
by using p = 3,¢ = 2. In addition it can be seen that among the best ten
performances the CC04 data set has never been used for optimizing param-
eters, which strengthens the assumption that the CC04 data set may not be
representative for evaluating the approach.

Summarizing, the attribution rates for the distance metrics and the classifiers
are presented in Figure 3.6. It shows the percentage of correctly attributed
documents over the test data sets, including and excluding the CC04 data
set.

3.7. Conclusion and Future Work

This chapter describes how the grammar syntax of writers can be used in
the field of authorship attribution. To do this, for every known author full
parse trees of all sentences are computed and transformed into pg-gram pro-
files. These profiles are then compared to the document profile of unknown
authorship by following two approaches: (1.) Calculating distances between
the profiles by applying different distance metrics, and (2.) utilizing common
machine learning algorithms with different sets of features (pg-grams).

Both variants have been evaluated using three different data sets, containing
various attribution problems. The distance metric approach has been addi-
tionally optimized by introducing parameters to exclude a certain number of
mostly used pg-grams and to restrict the set of incorporated pg-grams. It
could be examined that the best result with an overall accuracy of 73% sug-
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Figure 3.6.: Authorship Attribution: Evaluation Results By Correctly At-
tributed Documents Including and Excluding the CC04 Data Set.

gests to only use the 65 most frequently used pg-grams for the profile creation,
and to ignore the first three pg-grams. On the other side, the machine learning
evaluation did not use manual optimization, but nevertheless could outperform
the distance metrics and achieve a best accuracy of about 77%. Thereby it
could be seen that the best results can be gained by including all available
features as input for the classifiers.

Future Work

As this approach is based on the ideas and algorithms of the intrinsic pla-
giarism detection approaches described in Section 2, future work is similar.
Because the authorship attribution approach solely uses the grammar feature
and completely ignores information like the concrete words used, vocabulary
richness or n-grams, future work should concentrate on integrating other well-
known and good-working features to be able to build a reliable and hetero-
geneous authorship attribution tool. Furthermore, the optimization of the
parameters in the distance metrics comparison is currently only applied on
the similarity score and could also be integrated with the distance metrics as
they led to the best results.

Analogical to the previously presented approaches, research should finally also
be done on the applicability on other languages, as syntactically more com-
plex languages may also lead to good or even better authorship attribution
rates. Finally, also other heavily used classification algorithms like Markov
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Chains [85], decision tables [91] or tree-based techniques like Random Forest
[23] should be evaluated, which may produce different results.
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CHAPTER 4

Profiling Gender and Age of
Authors

4.1. Introduction

The automatic classification of data has become a major research topic in the
last years, and especially the analysis of written text has gained attraction due
to the easy availability of huge amounts of online documents such as web blogs,
social media postings or literary databases. Particularly useful information like
the gender or the age of the originator is of interest if, for example, groups of
writers are targeted or analyzed and the individual author is dispensable.

In contrast to traditional authorship attribution approaches that try to assign
one of several known candidate authors to an unlabeled document as addressed
in Chapter 3, the author profiling problem deals with the extraction of concrete
meta information about the author. Often this information includes gender

!This chapter is based on and contentual partly reused from the paper: M. Tschuggnall and
G. Specht. What Grammar Tells About Gender and Age of Authors. In Proceedings of the
4th International Conference on Advances in Information Mining and Management (IMMM),
Paris, France, July 2014, pages 30-35. [191]



4. Profiling Gender and Age of Authors

and age of the originator [8, 47, 156], but also other demographic information
like cultural background, level of education or psychological traits are exam-
ined in recent approaches [201, 128]. Where the mining of such information
can be applied very well to commercial applications by knowing the percent-
ages of gender and age commenting on a new product release, for example, it
is also of growing importance in juridical applications (Forensic Linguistics)
[54], where, e.g., the number of possible perpetrators can be reduced. More-
over especially nowadays in the area of cybercrime [127], recent approaches
investigate the content of e-mails [2], suicide letters or try to automatically
expose sexual predators from chat logs [75].

In this chapter, the ideas, algorithms and results of the plagiarism detection as
well as the authorship attribution approaches are adapted in a way that they
can be applied to the automatic profiling of authors. Concretely, the assump-
tion that authors can be distinguished by their usage of grammar is reused
and evaluated for the the classes gender and age. Thereby a main difference
to the previously described algorithms is that the profiling approach exploits
the grammar of whole author groups (e.g. females), instead of individual
writers.

The remainder of this chapter is organized as follows: Section 4.2 describes the
adapted, machine-learning-based algorithm including the utilized classifiers
and features. An extensive evaluation is then presented in Section 4.3, while
Section 4.4 concludes and discusses future work.

4.2. Profiling Authors Using pg-gram Profiles

The global idea of this thesis has been consequently reused for the profiling
task, i.e., the grammar of authors is analyzed. Concretely, the assumption
that individual authors have significantly different writing styles in terms of the
syntax that is used to construct sentences has been reutilized. As an additional
example to the previously presented, the following sentences? are semantically
equivalent, but differ with respect to the grammar building structure as can
be seen in Figure 4.1:

"My chair started squeaking a few days ago and it’s driving me nuts.” (Sg)

"Since a few days my chair is squeaking - it’s simply annoying.” (S7)

2Sentence Ss has been extracted from an anonymized web blog.
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PF{P/ \ VBD/ \ PF|{P VBZ/ \

VP
(My) (chalr) (started) ‘ (it) (‘s)
VP VBG/ \
/ \ (driving) / \
VBG ADVP
(squeaking)
NP/ \RB PRP NNS

/ ‘\ (ago) (me) (nuts)
DT/ JJ  NNS

(@)  (few) (days)

(S7)

IN NP PR NN VBZ VP PRP VBZ ADVP ADJP
(Since) / (my) (chair) (is) ‘ ity ('s) ‘
JJ NNS VBG RB JJ
(@) (few) (days) (squeaking) (simply) (annoying)

Figure 4.1.: Grammar Trees of Sentences (Sg) and (S57).
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Figure 4.2.: Overview of the Author Profiling Process For Gender Classifica-
tion.

Similarly to the PQ-Plag-Inn (Section 2.6) and the authorship attribution
(Section 3.2) algorithms, pg-gram profiles have also been utilized in this ap-
proach. The profiles are again used as input for machine learning algorithms,
which are trained in order to predict gender, age and a combination of both.
The main contribution is to evaluate how reliable a prediction of an authors
meta information is, when solely the pg-gram features are used.

A general overview of the profiling process is illustrated in Figure 4.2. It shows
the basic components in the example of predicting the gender of authors using
two respective document subsets, i.e., females and males, for training the
classifiers. In case of age classification, three distinguishable age groups are
used as described in Section 4.3. Finally, for estimating both gender and age
the subsets are combined, which results in six distinct training subsets.

4.2.1. Algorithm

Basically the steps to profile a document is similar to the way it is done for
authorship attribution with machine learning algorithms in this thesis:

1. At first the document is cleaned from unwanted characters and whites-
paces, split by sentences and grammatically parsed. In case of ambiguity
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of grammar trees, i.e., if there exist more than one valid parse tree for a
sentence, the tree with the highest probability estimated by the parser
is chosen.

2. Using the grammar trees of all sentences of the document, the pg-gram
index is calculated. By combining all pg-gram indices of all sentences,
a pg-gram profile is computed which contains a list of all pq-grams and
their corresponding frequency of appearance in the text. The frequency
is normalized by the total number of all appearing pq-grams. Addition-
ally to the percentage of occurrence, also the rank of each pg-gram is
stored in the profile as is described in the previous chapter (see Table
3.1).

3. Finally, the pg-gram profiles including occurrences and ranks are used
as features which are applied to common machine learning algorithms
that learn from the profiles and predict the gender and age, respectively.

4.2.2. Utilized Classifiers

To examine the profiling performance, the same classification algorithms that
have been used in Chapter 3 have been utilized: Naive Bayes classifier [78],
Bayes Network using the K2 classifier [34], Large Linear Classification using
LibLinear [45], support vector machines using LibSVM with nu-SVC classi-
fication [29], k-nearest-neighbors classifier (kNN) [4] using k = 1 and J48, a
pruned C4.5 decision tree [148].

4.2.3. Features

The features that have been used as input for the classifiers are extracted from
the pg-gram profiles. As described earlier, each pg-gram together with its
percentage of occurrence in the text represents a feature (OCCURRENCE-RATE),
as well as the position of the pg-gram in the descending order by occurrence
(RANK). A small example of a feature list including the correct gender and age
classification is depicted in Table 4.1, whereby details about age groups are
explained in Section 4.3. As used with authorship attribution, if a document
does not contain a specific pq-gram, the feature value for that pg-gram as well
as for the corresponding rank is set to —1.

Depending on the evaluation setup shown subsequently, the number of at-

tributes to be handled by the classification algorithms range from 7,000 up to
20,000.
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Feature Document A | Document B | Document C
NP-NN-*—%—x 2.68 1.89 2.84
NP-NN-*-*-%--RANK 1 6 2
PP-IN-*—%—x% 2.25 0.24 -1
PP-IN-*-*-%-RANK 2 153 -1
NP-DT—%—*—x% 1.99 2.11 1.23
NP-DT-*-*-*-RANK 3 2 11
correct gender male female male
correct age 20s 10s 30s

Table 4.1.: Example of a Feature List Serving as Input for Classification Al-
gorithms.

4.3. Evaluation

Basically, the prediction of gender and age of the author of a text document
is made by machine learning algorithms. Independent of the classifier used,
the input consists of a large list of features with appropriate values and a
corresponding classification class. The class is used to train the algorithms
if the document is part of the training set, as well as for evaluating if the
document is part of the test set.

4.3.1. Test Data And Experimental Setup
Test Data Set

The approach has been evaluated extensively using a frequently employed test
set created by Schler et. al [156], containing thousands of freely accessible
English web blogs. For this evaluation, a subset of approximately 8,000 ran-
domly selected blogs has been used, whereby for each blog entry the gender
as well as the age of the composer is given.

Regarding the latter, the ages are clustered into three distinct groups, as
defined by the original test set [156]: 13-17 (=10s), 23-27 (=20s) and 33-42
(=30s).3 Each age group is thereby separated by a five-year gap to gain higher

3The main reason that no older age groups are considered in the original data set is that at
the time of its creation (2006) to few data existed for older ages, i.e., only 3% of the blog
authors were older than 42 years. Nevertheless, the percentage of older social media users is
increasing rapidly: where in 2008 only 18% of the 50-60 years olds where active on social me-
dia platforms, this number goes up to over 60% for 2014. Therefore older age groups should
also be considered in future work. Sources http://www.jeffbullas.com/2011/09/02/20-
stunning-social-media-statistics/ and http://www.jeffbullas.com/2014/01/17/20-
social-media-facts-and-statistics-you-should-know-in-2014, visited July 2014
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4.3. Evaluation

distinguishability. The corpus is fairly balanced with respect to gender, but
has a majority in the 20s group and a minority in the 30s group. A detailed
information about the class distribution is shown in Table 4.2. Because of the
fact that simply predicting the majority class in all cases would lead to an
accuracy of, e.g., 53% for male, the baseline which should be exceeded is set
accordingly to 53% for gender, 46% for age and 25% for gender+age profiling,
respectively.

female | male sum

10s 18% 19% 37%
20s 21% 25% 46%
30s 8% 9% 17%

Sum | 47% | 53% | (100%)

Table 4.2.: Test Data Distribution.

Each blog consists of at least 200 English words and has been textually cleaned
in the original test data, i.e all unnecessary whitespace characters and HTML
tags etc. have already been removed. Hyperlinks have been replaced by the
word 'urlLink’. Nonetheless, because this approach depends on the calcula-
tion of grammar trees, the latter tags have been manually removed for the
evaluation, as the computation of grammar trees would be falsified.

Experimental Setup

The computation of the feature list is an essential part of the approach. Ba-
sically, it depends on the assignment of p and ¢, respectively, that is used
for the extraction of pg-grams from sentences. For example, by using p = 1
and g = 0 the pg-grams would be reduced to single POS tags. Nevertheless,
based on previous results, such configurations have been excluded as they led
to insufficient results. The range of both stem and base of pg-grams has been
evaluated in the range between 2 and 4, conforming to the size of n-grams
that are used in efficient approaches in information retrieval (e.g. [169]).

An overview of the parameters used can be seen in Table 4.3. All possible
settings, i.e., combinations of assignments of p and ¢ with classifiers, have
been evaluated on the test set using a 10-fold cross validation.

4.3.2. Profiling Results for Gender

The evaluation results for profiling the gender are listed in Table 4.4, whereby
the three best results have are highlighted. The best result using p = 2 and
q = 3 could be achieved with the support vector machine framework LibSVM,
leading to an accuracy of 69%. It utilizes the occurrence-rate feature set,
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Parameter Assignment

P, q 2-4

Smax 200

Pdmaz 500

input feature set | OCCURRENCE-RATE, RANK, ALL

Table 4.3.: Parameter Setup Used for the Evaluation.

whereby males could be identified with 71%. Although the prediction rate is
a little worse than those of other approaches (e.g. [156] achieves 80% over the
full test set using several style and content features), the result is promising
as it uses and evaluates only the proposed feature. The baseline of 53% could
be surpassed clearly.

4.3.3. Profiling Results for Age

Using an almost identical setting as for gender classification, the maximum
accuracy of 63% for age profiling results again from using LibSVM and the
OCCURRENCE-RATE feature set (but with p = 3 instead of p = 2), as can be seen
in Table 4.5. In general the accuracy for the prediction of the age groups 10s
and 20s are very solid, but all classifiers have problems predicting the 30s
group. For example, the best configuration achieved a rate of 70% for 10s and
68% for 20s, respectively, but could only predict 5% correctly in the eldest
group. While the other algorithms could profile the latter class at a higher
accuracy, interestingly the Naive Bayes classifier even missed it totally.

A reason for the misclassification may be the unbalanced distribution of the
test data, which contains only a small amount of 30s text samples compared
to the other groups. It might be the case that the classifiers would have
needed more samples to construct a proper prediction model. Even though
the unbalanced test set is an immediate consequence of the original test data
distribution ([156]), future work should try to create a smaller, but equally
distributed test set in order to examine the source of the problems occurring
in the 30s classification.

As with gender, the age results also significantly exceed the baseline of 43%.

Like it can be assumed, by taking also other features into account, a higher
accuracy can be achieved (e.g. [8] could reach 77% for age profiling).
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4. Profiling Gender and Age of Authors

Occurrence-Rate Rank Combined
Classifier P q 10s 20s 30s w. avg 10s 20s 30s w. avg 10s 20s 30s w. avg Max
kNN 2 2 41.0 56.6 25.7 47.0 56.1 56.0 29.4 51.6 46.9 55.6 25.4 47.8 51.6
Naive Bayes 2 2 66.0 47.8 38.5 52.4 66.4 48.8 38.7 52.9 66.0 48.2 38.7 52.4 52.9
BayesNet 2 2 65.9 47.4 38.6 52.2 66.2 48.4 38.4 52.6 66.2 47.9 38.5 52.4 52.6
LibLinear 2 2 58.7 55.0 25.0 51.5 65.9 58.5 29.6 56.6 61.6 55.4 30.4 53.6 56.6
LibSVM 2 2 64.2 60.8 15.6 56.7 68.7 68.1 6.4 62.8 66.8 64.0 13.1 59.7 62.8
J48 2 2 55.1 52.4 24.2 48.9 53.0 51.0 27.6 47.8 54.0 53.0 25.3 48.7 48.9
kNN 2 3 50.0 54.8 23.9 48.2 56.7 56.3 30.7 52.3 53.2 56.6 23.8 50.2 52.3
Naive Bayes 2 3 66.3 47.7 40.0 53.0 66.6 47.6 38.4 52.6 66.7 46.5 38.9 52.4 53.0
BayesNet 2 3 66.3 47.7 40.0 53.0 66.6 47.7 38.6 52.6 66.6 46.3 39.2 52.3 53.0
LibLinear 2 3 58.9 54.5 29.3 52.0 65.4 60.3 29.5 57.4 62.6 55.6 28.9 53.9 57.4
LibSVM 2 3 63.5 62.7 18.5 57.9 68.1 67.8 5.0 62.2 64.8 64.9 15.7 59.5 62.2
J48 2 3 54.8 50.7 23.5 47.8 53.2 51.4 25.3 47.8 55.3 52.8 24.5 49.3 49.3
kNN 2 4 52.9 55.1 24.2 49.3 56.2 55.9 26.2 51.1 52.0 54.6 23.9 48.7 51.1
Naive Bayes 2 4 66.8 48.1 39.8 53.2 67.6 48.1 39.7 53.5 67.5 47.6 40.6 53.5 53.5
BayesNet 2 4 66.7 48.0 39.7 53.1 67.6 48.1 39.7 53.5 67.5 47.5 40.3 53.4 53.5
LibLinear 2 4 60.3 55.5 27.4 52.9 64.9 57.9 25.6 55.7 62.6 57.3 27.5 54.5 55.7
LibSVM 2 4 64.5 64.2 22.1 59.5 69.4 68.2 4.4 62.8 66.9 65.4 15.4 60.5 62.8
J48 2 4 55.9 53.6 26.5 50.2 53.2 52.3 24.6 48.3 57.3 52.1 24.8 49.6 50.2
kNN 3 2 52.5 54.2 23.2 48.3 55.9 55.9 26.2 51.3 51.8 54.6 23.0 48.4 51.3
Naive Bayes 3 2 66.8 46.2 38.9 52.4 67.6 46.0 38.5 52.4 67.1 45.4 39.2 52.2 52.4
BayesNet 3 2 66.8 46.4 39.3 52.6 67.6 46.0 38.5 52.4 67.1 45.9 39.5 52.4 52.6
LibLinear 3 2 58.8 53.2 27.9 51.0 64.4 57.5 26.0 55.0 61.3 55.1 28.6 52.9 55.0
LibSVM 3 2 67.0 66.1 19.9 61.1 70.1 68.4 5.0 63.2 68.2 67.5 18.0 62.4 63.2
J48 3 2 51.9 53.9 29.0 49.0 55.3 50.9 21.7 47.7 52.8 50.7 23.8 47.2 49.0
kNN 3 3 51.2 56.8 27.2 49.8 54.4 53.3 25.1 48.9 53.5 56.8 26.5 50.5 50.5
Naive Bayes 3 3 67.3 47.0 40.1 53.1 67.5 45.5 39.5 52.5 67.2 44.1 39.1 51.7 53.1
BayesNet 3 3 67.3 47.2 39.8 53.1 67.6 45.5 39.3 52.5 67.2 44.4 39.3 51.9 53.1
LibLinear 3 3 62.1 55.7 26.7 53.2 63.0 58.6 25.7 55.1 64.5 57.5 26.1 55.1 55.1
LibSVM 3 3 68.3 65.1 17.6 60.7 68.5 67.6 5.0 62.2 68.9 66.0 13.3 61.3 62.2
J48 3 3 53.6 52.8 20.1 48.1 54.4 52.2 22.0 48.1 52.9 52.5 22.7 48.0 48.1
kNN 3 4 52.8 54.0 26.3 48.6 58.7 53.1 28.4 50.5 56.5 54.3 24.1 49.5 50.5
Naive Bayes 3 4 67.3 45.8 39.2 52.4 67.0 43.6 39.1 51.5 67.4 43.3 38.9 51.5 52.4
BayesNet 3 4 67.4 45.6 39.1 52.4 66.9 43.8 39.3 51.6 67.3 43.0 38.9 51.3 52.4
LibLinear 3 4 60.7 55.3 28.2 53.0 64.1 57.6 28.2 55.4 62.4 55.4 28.1 53.6 55.4
LibSVM 3 4 67.3 64.3 17.8 60.2 67.5 66.9 5.0 61.4 68.7 66.2 16.1 61.7 61.7
J48 3 4 52.3 54.3 27.2 49.2 56.1 53.8 26.3 50.2 55.8 53.8 24.3 49.6 50.2
kNN 4 2 49.8 53.0 25.2 47.2 54.6 56.1 20.4 50.4 51.6 53.5 23.9 47.9 50.4
Naive Bayes 4 2 67.3 45.3 38.2 52.0 67.3 45.9 38.8 52.3 67.9 45.2 39.1 52.4 52.4
BayesNet 4 2 67.3 45.6 38.7 52.3 67.4 46.0 39.1 52.4 67.9 44.5 38.7 52.0 52.4
LibLinear 4 2 59.3 54.7 28.2 52.2 62.4 58.7 26.2 55.0 60.3 55.5 28.1 52.9 55.0
LibSVM 4 2 64.9 64.2 19.8 59.4 67.7 68.1 4.4 62.2 67.8 66.6 14.7 61.6 62.2
J48 4 2 51.6 50.8 23.3 46.5 52.4 50.9 20.6 46.5 53.6 52.1 20.9 47.6 47.6
kNN 4 3 51.8 54.8 25.0 48.6 52.7 54.5 22.5 48.8 53.4 55.5 25.4 49.6 49.6
Naive Bayes 4 3 67.0 45.4 38.7 52.1 67.8 44.2 39.1 52.0 67.7 44.1 38.9 51.9 52.1
BayesNet 4 3 67.0 45.2 38.9 52.1 67.8 44.2 39.1 52.0 67.7 44.2 39.0 51.9 52.1
LibLinear 4 3 58.2 54.3 25.3 51.1 62.2 60.0 27.4 55.9 61.5 56.0 26.6 53.4 55.9
LibSVM 4 3 65.1 63.4 14.4 58.6 67.0 67.0 2.6 61.2 66.2 65.3 12.3 60.0 61.2
J48 4 3 54.5 52.3 22.5 48.1 53.1 52.2 23.6 48.0 52.3 50.3 27.1 47.2 48.1
kNN 4 4 50.7 53.4 27.3 47.8 53.1 54.7 24.0 49.3 52.4 54.7 27.4 49.2 49.3
Naive Bayes 4 4 67.2 45.6 38.5 52.3 67.3 43.8 38.7 51.5 67.1 43.6 38.4 51.4 52.3
BayesNet 4 4 67.2 45.4 38.6 52.2 67.3 43.7 38.6 51.5 67.2 43.3 38.3 51.3 52.2
LibLinear 4 4 59.8 53.7 29.2 52.0 63.4 59.8 30.1 56.6 61.8 56.5 29.5 54.2 56.6
LibSVM 4 4 65.8 64.2 16.5 59.5 67.1 67.4 3.2 61.6 67.9 66.5 13.6 61.4 61.6
J48 4 4 54.6 52.5 21.3 48.3 56.3 52.5 23.1 49.2 55.3 55.3 21.9 50.0 50.0

Table 4.5.: Evaluation Results in Percent For Age Profiling.
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4.3.4. Profiling Results for Gender And Age

The evaluation results for the combined gender and age profiling problem are
shown in Table 4.6. Here, the combinations of gender and age, i.e., six classes,
had to be predicted. The baseline coming from the majority class male-20s is
25% and could also be surpassed using the LibLinear classifier. With relatively
large structure fragments resulting from the assignments p = 4 and ¢ = 3, an
accuracy of 39% could be achieved using the RANK feature set.

Due to visibility reasons the details for the individual sub results have been
omitted in the table. Nonetheless the experimental data shows that the com-
bined gender and age classification also suffers from predicting the male/female
classes of the 30s age group correctly.

4.3.5. Confusion Matrices

A detailed analysis of the best working classifications is shown in the con-
fusion matrices in Table 4.7. When predicting the gender, the number of
false-positives for male as well as for female are approximately the same. On
the other side, the classification of age groups had massive problems concern-
ing the 30s group, where only 0.5% have been labeled correctly. The majority
of this group has been predicted as 20s, which represents also the majority
group of the test data.

As already mentioned, a possible explanation might be the unbalanced test
set. This is reinforced by the fact that mostly all false-positives of the 10s
group have also been labeled as 20s. But what also seems plausible is the
hypothesis that the grammar of 13-17 (10s) year olds differs significantly from
that of 23-27 (20s) year olds, where on the other hand the grammatical style of
the latter is similar to 33-42 (30s) year olds. Intuitively this seems reasonable
when looking at sample documents, but future work should investigate further
to verify or falsify this assumption.

A visualization of the confusion matrices is depicted in Figure 4.3. Thereby
the values have been normalized per class, i.e., for each row. It can be seen
in diagram (a) that the gender plot perfectly emphasizes the diagonal, which
means that the majority of each gender group could be profiled properly: 72%
of the males and 66% of the females could be attributed correctly. Diagram
(b) shows the confusion matrix for age, which denotes good results for the 10s
age group with an accuracy of 68% and the 20s groups with an accuracy of
even 81%. Nevertheless and as mentioned before, the problem with the 30s
group can also be seen clearly where only 3% could be classified correctly and
the majority of 87% is falsely attributed as 20s. Finally, diagram (c) illus-
trates the percentages for gender including age profiling. Here, also acceptable
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Classifier P 4q | Occurrence-Rate Rank All Max
Naive Bayes 2 2 30.2 30.3 30.3 30.3
BayesNet 2 2 36.3 35.3 35.2 36.3
LibLinear 2 2 36.1 32.6 32.6 36.1
LibSVM 2 2 25.4 25.4 25.4 25.4
kNN 2 2 32.6 25.6 25.5 32.6
J48 2 2 27.9 27.9 28.2 28.2
Naive Bayes 2 3 31.7 29.5 31.6 31.7
BayesNet 2 3 35.5 36.2 35.5 36.2
LibLinear 2 3 37.8 31.6 32.9 | 37.8
LibSVM 2 3 25.4 25.4 32.9 32.9
kNN 2 3 30.2 29.4 30.9 30.9
J48 2 3 29.1 26.9 31.0 31.0
Naive Bayes 2 4 31.5 28.3 30.9 31.5
BayesNet 2 4 36.1 36.4 36.0 36.4
LibLinear 2 4 34.3 31.2 33.6 34.3
LibSVM 2 4 25.4 25.4 25.4 25.4
kNN 2 4 30.1 29.8 30.0 30.1
J48 2 4 29.0 27.6 28.6 29.0
Naive Bayes 3 2 32.0 31.3 31.3 32.0
BayesNet 3 2 35.3 35.8 35.8 35.8
LibLinear 3 2 35.7 34.7 34.7 | 35.7
LibSVM 3 2 25.4 25.4 25.4 25.4
kNN 3 2 30.6 27.3 27.3 30.6
J48 3 2 29.9 28.2 28.2 29.9
Naive Bayes 3 3 31.1 28.9 30.2 31.1
BayesNet 3 3 35.6 35.2 34.7 35.6
LibLinear 3 3 33.9 31.3 33.1 33.9
LibSVM 3 3 25.4 25.4 25.4 25.4
kNN 3 3 29.3 28.6 29.0 29.3
J48 3 3 31.1 28.2 27.1 31.1
Naive Bayes 3 4 31.8 29.7 31.8 31.8
BayesNet 3 4 34.7 35.8 34.7 | 35.8
LibLinear 3 4 34.8 31.7 33.5 34.8
LibSVM 3 4 25.4 25.4 25.4 25.4
kNN 3 4 28.2 27.8 26.8 28.2
J48 3 4 29.0 28.0 28.3 29.0
Naive Bayes 4 2 34.8 35.7 35.1 35.7
BayesNet 4 2 34.9 35.7 34.8 35.7
LibLinear 4 2 33.8 32.1 33.7 | 33.8
LibSVM 4 2 37.2 34.5 25.8 | 37.2
kNN 4 2 28.9 27.1 28.0 28.9
J48 4 2 29.5 24.6 27.5 29.5
Naive Bayes 4 3 35.0 35.1 34.5 35.1
BayesNet 4 3 34.8 34.9 34.7 34.9
LibLinear 4 3 33.9 39.1 30.9 | 39.1
LibSVM 4 3 36.2 32.6 35.6 36.2
kNN 4 3 27.3 274 28.1 28.1
J48 4 3 27.5 26.7 27.9 27.9
Naive Bayes 4 4 35.7 35.5 35.2 35.7
BayesNet 4 4 35.5 35.6 35.6 35.6
LibLinear 4 4 33.2 31.3 33.3 33.3
LibSVM 4 4 25.4 34.0 34.7 | 34.7
kNN 4 4 27.5 29.5 30.4 30.4
J48 4 4 26.6 27.7 28.2 28.2

Table 4.6.: Evaluation Results in Percent For Gender and Age Profiling.
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classified as [%]
10s 20s 30s

10s | 25.3 116 04

classified as [%]
female male

female 30.8 16.1
male 15.0 38.1 20s | 7.8 37.5 09
: - 30s | 1.7 14.3 0.5
a) Gender
) (b) Age
classified as [%]

female-10s female-20s female-30s | male-10s male-20s male-30s
female-10s 9.8 3.1 0.2 3.5 1.3 0.1
female-20s 3.3 7.8 1.1 2.1 6.0 0.5
female-30s 0.6 2.8 1.0 0.5 2.7 0.6
male-10s 5.2 2.1 0.4 6.4 4.6 0.7
male-20s 1.0 4.7 0.9 3.7 13.3 1.7
male-30s 0.1 1.0 0.5 0.9 5.1 0.7

(c) Gender And Age

Table 4.7.: Confusion Matrices of the Best Results For Gender, Age and Gen-
der Including Age Profiling.

attributions could be done for all classes not containing the 30s age group.
On the other hand, the remaining classes consequently also have been profiled
mainly incorrectly.

4.4. Conclusion and Future Work

Conclusion

In this chapter, the previously described grammar profiles have been adapted
in order to automatically profile the author of a text document. Based on the
idea presented in Chapter 3, substructures of parse trees are utilized by using
pg-grams, and machine learning algorithms are finally applied on pg-gram
profiles to learn and predict the gender and age of the originator.

An extensive evaluation using a state-of-the art test set shows that pg-grams
can be used as significant features in text classification, whereby gender and
age can be predicted with an accuracy of 69% and 63%, respectively. With
respect to the fact that the experiment in this paper solely uses the presented
feature, the results are promising.

Despite of the class to predict, the support vector machine framework LibSVM
and the large linear classification LibLinear worked best, whereas the kNN
classifier and the C4.5 decision tree produced worse results. Also, the combined
feature set using the frequencies of occurrences together with the ranks is
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female-10s | 545 172 12 104 7 06

female-20s 157 k) 52 99 2 25

female-303 77 5 12 56 31 7

male-10s 267 107 21 29 24 36
female 657 343
30
male-203 41 185 36 147 524 68

male-30s 14 124 55 103 614 9

female male 105 20s 305 female-10s  female-20s  female-30s  male-10s  male-20s  male-30s

(@ (b) (©)

Figure 4.3.: Profiling: Confusion Matrices in Percent and Normalized per
Class.

00
o

~
o

D
o

v
o

X
= B occurence-rate
o
4
g 0 B rank
o
g .
30 Ocombined
20 --baseline

=
o

gender age gender+age

Figure 4.4.: Profiling: Evaluation Results Using Different Feature Sets.

always inferior to the isolated subsets, which may possibly be correlated to
the large amount of features employed with this set (double the size of the
other sets).

Summarizing, Figure 4.4 illustrates the evaluation results for all three classi-
fication problems using the different feature sets. In general, the results could
significantly exceed the corresponding baselines, which represent the predic-
tion rate if simply the majority classes are selected in all cases. The result
manifests that solely the grammar of authors - analyzed with syntax trees and
pg-grams - serves as a distinct feature for author profiling as well.

98



4.4. Conclusion and Future Work

Future Work

In general the results are promising, especially when taking into account that
only one feature type has been used, whereas other approaches make use of
up to hundreds of feature types. Nevertheless evaluation results showed that
the approach has problems predicting the 30s age group of the provided test
data set. Although hypothesis explaining the problem have been stated, they
should be verified or falsified in detail by utilizing different, heterogeneous test
sets.

In order to build a reliable text classification approach, the grammar feature
should be combined with other commonly used style and content feature sets
in future work. Besides the utilization of common lexical, syntactic or com-
plexity features, the usage of vocabulary or neologisms should be considered,
especially when analyzing online content. Moreover it should be investigated
whether the proposed feature is also applicable to shorter text samples such
as chat logs or even single-line Twitter postings.

Finally and as with all algorithms described in this thesis, research should
also examine whether the approach is also exploitable to other languages. In
particular the investigation of achievable profiling accuracies of online content
written in different languages could be interesting, as demographic features
may also come into play that have to considered.
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CHAPTER b

Decomposition of Multi-Author
Documents

5.1. Introduction

Approaches which attempt to divide a single text document into distinguish-
able units like different topics, for example, are usually referred to as text
segmentation approaches (e.g. [30], [117]). Here, also many features including
statistical models, similarities between words or other semantic analyses are
used. Moreover, text clusters are also used in recent plagiarism detection al-
gorithms (e.g. [207]) which try to build a cluster for the main author and one
or more clusters for intrusive paragraphs. Another scenario where the clus-
tering of text is applicable is the analysis of multi-author academic papers:
especially the verification of collaborated student works such as bachelor or
master theses can be useful in order to determine the amount of work done by
each student.

!This chapter is based on and contentual partly reused from the paper: M. Tschuggnall and
G. Specht. Automatic Decomposition of Multi-Author Documents Using Grammar Analysis.
In Proceedings of the 26th GI-Workshop on Grundlagen von Datenbanken (GvD), Bozen,
Italy, October 2014. [189]
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The intention of the work presented in this chapter is to evaluate the pg-gram
feature sets in combination with current clustering algorithms, i.e., to verify
if the grammar of authors - represented by pg-grams - can also be used to
intelligently build clusters. To do this, the ideas of the previous chapters have
been adapted und evaluated on specifically created test data sets.

The rest of this chapter is organized as follows: Section 5.2 recapitulates the
basic algorithm, which is then evaluated in Section 5.3 by using different clus-
tering algorithms and data sets. A comparison of the clustering and classifica-
tion approaches is discussed in Section 5.4, and finally a conclusion and future
work directions are given in Section 5.5.

5.2. Algorithm

The main idea is to utilize common state-of-the-art clustering algorithms,
which build clusters of text documents or paragraphs based on pg-gram fea-
tures sets. Given a document, the algorithm basically consists of the following
steps:

1. The document is preprocessed by eliminating whitespaces and other
non-alphanumeric characters, and then it is partitioned into single para-
graphs.

2. Each paragraph is then split into single sentences, which are then parsed
and from which pg-grams are extracted subsequently.

3. Finally, for each paragraph a pg-gram profile is calculated which con-
tains all occurring pg-grams and their respective percentages. Each
paragraph-profile is then provided as input for clustering algorithms,
which try to build clusters based on the pg-grams. Concretely, the fea-
ture sets 0OCCURRENCE-RATE, RANK and ALL have been used and evaluated
separately like it has been done in the previous chapters.

Utilized Clustering Algorithms

Using the WEKA framework [67], the following clustering algorithms have
been evaluated:

o K-Means [11]

e Cascaded K-Means (the number of clusters is cascaded and automati-
cally chosen) [26]
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e X-Means [13§]
e Agglomerative Hierarchical Clustering [121]
e Farthest First [36]

For the clustering algorithms K-Means, Hierarchical Clustering and Farthest
First the number of clusters has been predefined according to the respective
test data. This means if the test document has been collaborated by three
authors, the number of clusters has also been set to three. On the other
hand, the algorithms Cascaded K-Means and X-Means implicitly decide which
amount of clusters is optimal. Therefore these algorithms have been limited
only in ranges, i.e., the minimum and maximum number of clusters has been
set to two and six, respectively.

5.3. Evaluation

The utilization of pg-gram profiles as input features for modern clustering
algorithms has been extensively evaluated using different documents and data
sets. As the clustering and classification problems are closely related, the
global aim was to experiment on the accuracy of automatic text clustering
using solely the proposed grammar feature, and furthermore to compare it to
those of current classification techniques.

5.3.1. Test Data and Experimental Setup

In order to evaluate the idea, different documents and test data sets have
been used, which are explained in more detail in the following. Thereby single
documents have been created which contain paragraphs written by different
authors, as well as multiple documents, whereby each document is written
by one author. In the latter case, every document is treated as one (large)
paragraph for simplification reasons.

As before, different parameter settings have been evaluated, i.e., the pq-gram
values p and ¢ have been varied from 2 to 4, in combination with the feature
sets OCCURRENCE-RATE, RANK and ALL.

Twain-Wells

This document has been specifically created for the evaluation of in-document
clustering. It contains 50 paragraphs of the book ”The Adventures of Huckle-
berry Finn” by Mark Twain, and 50 paragraphs of ”The Time Machine” by
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H. G. Wells?. All paragraphs have been randomly shuffled, whereby the size
of each paragraph varies from approximately 25 words up to 280 words.

Twain-Wells-Shelley

In a similar fashion a three-author document has been created. It again uses
(different) paragraphs of the same books by Twain and Wells, and appends
it by paragraphs of the book ”Frankenstein; Or, The Modern Prometheus”
by Mary Wollstonecraft Shelley. Summarizing, the document contains 50
paragraphs by Mark Twain, 50 paragraphs by H. G. Wells and another 50
paragraphs by Mary Shelley, whereby the paragraph sizes are similar to the
Twain-Wells document.

The Federalist Papers and the PAN12 data set

To be able to compare the clustering algorithms to the classification algo-
rithms, the data sets used for authorship attribution (see Chapter 3) have
been reused. As stated before, each document is thereby treated as one para-
graph, written by the respective author. In contrast to the attribution data
sets all available documents have been included as the clustering process does
not need training data. Also, from the PAN12 data set only the subproblems
A and B have been used, as the other problems contain only one sample per
author and thus the calculation of clusters would be meaningless.

In total the Federalist Papers contain 70 documents (paragraphs) written by
three authors, and both subsets of PAN12 contain 14 documents (paragraphs)
written by three authors and distributed equally.

5.3.2. Results

The best results of the clustering evaluation are presented in Table 5.1, where
the best performance for each clusterer over all data sets is shown in subtable
(a), and the best performance for each data set is shown in subtable (b),
respectively. With an accuracy of 63.7% the K-Means algorithm worked best
by using p = 2,¢ = 3 and by utilizing all available features. Interestingly, the
X-Means algorithm also achieved good results considering the fact that in this
case the number of clusters has been assigned automatically by the algorithm.
Finally, the hierarchical cluster performed worst gaining an accuracy of nearly
10% less than K-Means.

Regarding the best performances for each test data set, the results for the
manually created data sets from novel literature are generally poor. For ex-

2The books have been obtained from the Project Gutenberg library [180]
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ample, the best result for the two-author document Twain-Wells is only 59.6%,
i.e., the accuracy is only slightly better than the baseline percentage of 50%,
which can be achieved by randomly assigning paragraphs into two clusters.?
On the other hand, the data sets reused from authorship attribution, namely
the Federalist Papers and the PAN12 data set, achieved very good results with
an accuracy of about 89% and 83%, respectively. Nevertheless, as the other
data sets have been specifically created for the clustering evaluation, these
results may be more expressive. Therefore a comparison between clustering
and classification approaches is discussed in Section 5.4, showing that the lat-
ter achieve significantly better results on those data sets when using the same
features.

Method P q Feature Set Accuracy
K-Means 3 2 Al 63.7
X-Means 2 4 RANK 61.7
Farthest First 4 2 Occurrence-Rate 58.7
Cascaded K-Means 2 2 RANK 55.3
Hierarchical Clusterer 4 3 Occurrence-Rate 54.7

(a) Clustering Algorithms
Data Set Method P q Feature Set | Accuracy
Twain-Wells X-Means 3 2 Al 59.6
Twain-Wells-Shelley | X-Means 3 4 Al 49.0
FED Farthest First 4 3 RANK 89.4
PAN12-A/B K-Means 3 3 Al 83.3

(b) Test Data Sets

Table 5.1.: Best Evaluation Results for each Clustering Algorithm and Test
Data Set in Percent.

Detailed results are shown in Table 5.2 for every data set and the feature sets
OCCURRENCE-RATE (OR), RANK (RK) and the combined set. The three best
results are highlighted.

5.4. Comparison of Clustering and Classification
Approaches
For the given data sets, any clustering problem can be rewritten as classifica-

tion problem with the exception that the latter need training data. Although
a direct comparison should be treated with caution, it still gives an insight of

3In this case X-Means dynamically created two clusters, but the result is still better than
that of other algorithms using a fixed number of clusters.
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Twain-Wells Twain-Wells-Shelly Federalist Papers PAN12-A/B Average
Clusterer p q OR RK ALL OR RK ALL OR RK ALL OR RK ALL OR RK ALL Max
K-Means 2 2 51.5 51.5 51.5 44.3 36.9 39.6 54.5 74.2 65.2 83.3 83.3 83.3 58.4 61.5 59.9 61.5
Hierarchical Clusterer 2 2 50.5 50.5 50.5 34.2 34.2 34.2 75.8 74.2 75.8 50.0 50.0 50.0 52.6 52.2 52.6 52.6
Farthest First 2 2 50.5 50.5 50.5 34.9 34.9 34.9 74.2 77.3 75.8 58.3 58.3 58.3 54.5 55.3 54.9 55.3
X-Means 2 2 57.6 57.6 57.6 34.2 36.9 34.2 48.5 68.2 51.5 58.3 58.3 58.3 49.7 55.3 50.4 55.3
Cascaded K-Means 2 2 57.6 57.6 57.6 34.2 36.9 34.2 48.5 68.2 51.5 58.3 58.3 58.3 49.7 55.3 50.4 55.3
K-Means 2 3 51.5 51.5 51.5 38.3 37.6 38.3 68.2 69.7 72.7 83.3 75.0 83.3 60.3 58.4 61.5 61.5
Hierarchical Clusterer 2 3 50.5 50.5 50.5 34.2 34.2 34.2 75.8 75.8 75.8 50.0 50.0 50.0 52.6 52.6 52.6 52.6
Farthest First 2 3 50.5 50.5 50.5 34.2 34.2 34.2 78.8 77.3 77.3 58.3 58.3 58.3 55.5 55.1 55.1 55.5
X-Means 2 3 56.6 56.6 56.6 38.3 36.9 35.6 74.2 72.7 72.7 58.3 58.3 58.3 56.8 56.1 55.8 56.8
Cascaded K-Means 2 3 56.6 56.6 56.6 38.3 36.9 35.6 74.2 72.7 72.7 58.3 58.3 58.3 56.8 56.1 55.8 56.8
K-Means 2 4 52.5 52.5 52.5 40.9 38.9 40.3 69.7 75.8 75.8 83.3 83.3 83.3 61.6 62.6 63.0 63.0
Hierarchical Clusterer 2 4 50.5 50.5 50.5 34.2 34.2 34.2 75.8 74.2 75.8 50.0 50.0 50.0 52.6 52.2 52.6 52.6
Farthest First 2 4 50.5 50.5 50.5 34.2 34.2 34.2 72.7 71.2 77.3 58.3 58.3 58.3 53.9 53.6 55.1 55.1
X-Means 2 4 57.6 57.6 57.6 45.6 35.6 38.9 68.2 78.8 69.7 66.7 75.0 75.0 59.5 61.7 60.3 61.7
Cascaded K-Means 2 4 57.6 57.6 57.6 45.6 35.6 38.9 68.2 78.8 69.7 66.7 75.0 75.0 59.5 61.7 60.3 61.7
K-Means 3 2 53.5 53.5 53.5 44.3 34.2 36.2 77.3 80.3 81.8 75.0 83.3 83.3 62.5 62.8 63.7 63.7
Hierarchical Clusterer 3 2 50.5 50.5 50.5 34.2 34.2 34.2 75.8 74.2 75.8 50.0 50.0 50.0 52.6 52.2 52.6 52.6
Farthest First 3 2 50.5 50.5 50.5 34.2 34.9 34.9 78.8 77.3 78.8 58.3 58.3 58.3 55.5 55.3 55.6 55.6
X-Means 3 2 59.6 59.6 59.6 45.0 38.3 41.6 69.7 78.8 75.8 50.0 58.3 50.0 56.1 58.7 56.7 58.7
Cascaded K-Means 3 2 59.6 59.6 59.6 45.0 38.3 41.6 69.7 78.8 75.8 50.0 58.3 50.0 56.1 58.7 56.7 58.7
K-Means 3 3 51.5 51.5 51.5 37.6 34.9 35.6 75.8 78.8 77.3 83.3 83.3 83.3 62.0 62.1 61.9 62.1
Hierarchical Clusterer 3 3 50.5 50.5 50.5 34.2 34.2 34.2 77.3 75.8 77.3 50.0 50.0 50.0 53.0 52.6 53.0 53.0
Farthest First 3 3 50.5 50.5 50.5 34.9 34.2 34.2 66.7 75.8 72.7 66.7 58.3 58.3 54.7 54.7 53.9 54.7
X-Means 3 3 53.5 53.5 53.5 35.6 47.0 43.6 51.5 66.7 60.6 58.3 58.3 58.3 49.7 56.4 54.0 56.4
Cascaded K-Means 3 3 53.5 53.5 53.5 35.6 47.0 43.6 51.5 66.7 60.6 58.3 58.3 58.3 49.7 56.4 54.0 56.4
K-Means 3 4 50.5 50.5 50.5 38.9 35.6 36.9 78.8 77.3 75.8 75.0 75.0 75.0 60.8 59.6 59.5 60.8
Hierarchical Clusterer 3 4 50.5 50.5 50.5 34.2 34.2 34.2 75.8 75.8 75.8 50.0 50.0 50.0 52.6 52.6 52.6 52.6
Farthest First 3 4 50.5 50.5 50.5 34.2 34.2 34.2 51.5 86.4 81.8 75.0 58.3 66.7 52.8 57.4 58.3 58.3
X-Means 3 4 52.5 52.5 52.5 39.6 43.0 49.0 69.7 68.2 68.2 58.3 58.3 58.3 55.0 55.5 57.0 57.0
Cascaded K-Means 3 4 52.5 52.5 52.5 39.6 43.0 49.0 69.7 68.2 68.2 58.3 58.3 58.3 55.0 55.5 57.0 57.0
K-Means 4 2 52.5 52.5 52.5 35.6 34.2 34.2 74.2 72.7 72.7 83.3 83.3 83.3 61.4 60.7 60.7 61.4
Hierarchical Clusterer 4 2 50.5 50.5 50.5 34.2 34.2 34.2 75.8 74.2 75.8 50.0 50.0 50.0 52.6 52.2 52.6 52.6
Farthest First 4 2 50.5 50.5 50.5 34.2 34.2 34.9 83.3 86.4 84.8 66.7 58.3 58.3 58.7 57.4 57.1 58.7
X-Means 4 2 51.5 51.5 51.5 34.2 36.2 34.2 51.5 62.1 59.1 58.3 75.0 66.7 48.9 56.2 52.9 56.2
Cascaded K-Means 4 2 51.5 51.5 51.5 34.2 36.2 34.2 51.5 62.1 59.1 58.3 75.0 66.7 48.9 56.2 52.9 56.2
K-Means 4 3 50.5 50.5 50.5 35.6 34.2 34.9 80.3 77.3 78.8 75.0 83.3 83.3 60.3 61.3 61.9 61.9
Hierarchical Clusterer 4 3 50.5 50.5 50.5 34.2 34.2 34.2 75.8 74.2 75.8 58.3 50.0 50.0 54.7 52.2 52.6 54.7
Farthest First 4 3 52.5 52.5 52.5 34.9 34.2 34.2 75.8 89.4 84.8 58.3 58.3 58.3 55.4 58.6 57.5 58.6
X-Means 4 3 52.5 52.5 52.5 33.6 34.9 34.9 63.6 69.7 68.2 58.3 58.3 66.7 52.0 53.9 55.6 55.6
Cascaded K-Means 4 3 52.5 52.5 52.5 33.6 34.9 34.9 63.6 69.7 68.2 58.3 58.3 66.7 52.0 53.9 55.6 55.6
K-Means 4 4 50.5 50.5 50.5 34.2 34.2 34.2 78.8 77.3 78.8 75.0 83.3 83.3 59.6 61.3 61.7 61.7
Hierarchical Clusterer 4 4 50.5 50.5 50.5 34.2 34.2 34.2 77.3 75.8 75.8 50.0 50.0 50.0 53.0 52.6 52.6 53.0
Farthest First 4 4 51.5 51.5 51.5 34.2 34.2 34.2 74.2 84.8 80.3 66.7 58.3 58.3 56.7 57.2 56.1 57.2
X-Means 4 4 50.5 50.5 50.5 35.6 33.6 33.6 59.1 74.2 65.2 66.7 66.7 58.3 53.0 56.2 51.9 56.2
Cascaded K-Means 4 4 50.5 50.5 50.5 35.6 33.6 33.6 59.1 74.2 65.2 66.7 66.7 58.3 53.0 56.2 51.9 56.2

Table 5.2.: Clustering Evaluation Results in Percent For Different Test Data.
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how the two different approaches perform over the same data sets. Therefore
an additional evaluation is shown in the following, which compares the per-
formance of the clustering algorithms to the performance of the classification
algorithms used earlier in this thesis. To compensate the missing training
data, a 10-fold cross-validation has been used for each classifier.

Table 5.3 shows the performance of each classifier compared to the best clus-
tering result over the same data and pg-setting. It can be seen that the clas-
sifiers significantly outperform the clustering results for the Twain-Wells and
Twain-Wells-Shelley documents. As expected from the authorship attribution
and profiling results, respectively, the support vector machine framework (Lib-
SVM) and the linear classifier (LibLinear) perform best, reaching a maximum
accuracy of nearly 87% for the Twain-Wells document. Moreover, the average
improvement is given in the bottom line, showing that most of the classi-
fiers outperform the best clustering result by over 20% in average. Solely the
kNN algorithm achieves minor improvements as it attributed the two-author
document with a poor accuracy of about 60% only.

A similar general improvement could be achieved on the three-author docu-
ment Twain-Wells-Shelley as can be seen in subtable (b). Again, LibSVM
could achieve an accuracy of about 75%, whereas the best clustering config-
uration could only reach 49%. Except for the kNN algorithm, all classifiers
significantly outperform the best clustering results for every configuration.
In average, LibSVM could even improve the accuracy by 29%, whereas kNN
reaches only 5% due to similar reasons as stated before.

Quite different comparison results have been obtained for the Federalist Papers
and PAN12 data sets, respectively, which have been used for the authorship
attribution experiments in Chapter 3. Here, the improvements gained from
the classifiers are only minor, and in some cases are even negative, i.e., the
classification algorithms perform worse than the clustering algorithms. A gen-
eral explanation is the good performance of the clustering algorithms on these
data sets, especially by utilizing the Farthest First and K-Means algorithms.

In case of the Federalist Papers data set shown in subtable (c), all algorithms
except kNN could achieve at least some improvement. Although the LibLinear
classifier could reach an outstanding accuracy of 97% using the configuration
p =3 and ¢ = 4, the global improvement is below 10% for all classifiers. As
before, the kNN algorithm performs worst and in average is even inferior to
the clustering results.

For the sake of completeness also the authorship attribution data set PAN12

has been compared to the clustering results as shown in subtable (d). Here,
the outcome is quite diverse as some classifiers could improve the clusterers
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P q Algorithm Max | N-Bay Bay-Net LibLin LibSVM kNN J48
2 2 X-Means 57.6 77.8 82.3 85.2 86.9 62.6 85.5
2 3 X-Means 56.6 79.8 80.8 81.8 83.3 60.6 80.8
2 4 X-Means 57.6 76.8 79.8 82.2 83.8 58.6 81.0
3 2 X-Means 59.6 78.8 80.8 81.8 83.6 59.6 80.8
3 3 X-Means 53.5 76.8 77.8 80.5 82.3 61.6 79.8
3 4 X-Means 52.5 81.8 79.8 81.8 83.8 63.6 82.0
4 2 K-Means 52.5 86.9 83.3 83.5 84.3 62.6 81.8
4 3 X-Means 52.5 79.8 79.8 80.1 80.3 59.6 77.4
4 4 Farth. First 515 72.7 4.7 75.8 77.0 60.6 75.8
average improvement 24.1 25.0 26.5 27.9 6.2 25.7
(a) Twain-Wells
P q Algorithm Max | N-Bay Bay-Net LibLin LibSVM kNN J48
2 2 K-Means 44.3 67.8 70.8 74.0 75.2 51.0 73.3
2 3 X-Means 38.3 65.1 67.1 70.7 72.3 48.3 70.2
2 4 X-Means 45.6 63.1 68.1 70.5 71.8 49.0 69.3
3 2 X-Means 45.0 51.7 64.1 67.3 68.8 45.6 65.4
3 3 X-Means 47.0 57.7 64.8 67.3 68.5 47.0 65.9
3 4 X-Means 49.0 67.8 67.8 70.5 72.5 46.3 68.3
4 2 X-Means 36.2 61.1 67.1 69.1 69.5 50.3 65.1
4 3 K-Means 35.6 53.0 63.8 67.6 70.0 47.0 66.6
4 4 X-Means 35.6 57.7 66.1 68.5 69.3 42.3 66.8
average improvement 18.7 24.8 27.7 29.0 5.6 26.0
(b) Twain-Wells-Shelley
P 4q Algorithm Max | N-Bay Bay-Net LibLin LibSVM kNN J48
2 2 Farth. First 773 81.1 86.4 90.9 84.2 74.2 81.8
2 3 Farth. First 78.8 85.6 87.4 924 89.0 78.8 828
2 4 X-Means 78.8 89.4 92.4 90.9 87.3 89.4  85.9
3 2 K-Means 81.8 82.6 87.9 92.4 85.5 80.3  83.8
3 3 K-Means 78.8 92.4 92.4 924 86.4 81.8 838
3 4 Farth. First 86.4 84.8 90.9 97.0 85.8 81.8  85.6
4 2 Farth. First 86.6 81.8 89.4 87.9 83.3 773 84.1
4 3 Farth. First 894 85.6 92.4 89.4 85.8 80.3  83.3
4 4 Farth. First 84.8 86.4 90.9 89.4 85.8 84.8  83.6
average improvement 3.0 7.5 8.9 3.4 -1.6 1.3
(c) Federalist Papers
P 4q Algorithm Max | N-Bay Bay-Net LibLin LibSVM kNN J48
2 2 K-Means 83.3 83.3 33.3 100.0 100.0 100.0 33.3
2 3 K-Means 83.3 83.3 33.3 100.0 100.0 100.0 33.3
2 4 K-Means 83.3 83.4 33.3 100.0 100.0 100.0 33.3
3 2 K-Means 83.3 75.0 33.3 91.7 91.7 100.0 33.3
3 3 K-Means 83.3 100.0 33.3 100.0 91.7 100.0 33.3
3 4  Farth. First  75.0 66.7 33.3 100.0 100.0 91.7 33.3
4 2 K-Means 83.3 91.7 33.3 91.7 75.0 91.7 33.3
4 3 K-Means 83.3 75.0 33.3 100.0 75.0 91.7 33.3
4 4 K-Means 83.3 75.0 33.3 100.0 83.4 83.4 33.3
average improvement -0.9 -49.1 15.8 8.4 13.0 -49.1

(d) PAN12-A/B

Table 5.3.: Best Evaluation Results for each Clustering Algorithm and Test
Data Set in Percent.
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significantly up to 15%, whereas others worsen the accuracy even more dras-
tically down by 50%. A possible explanation might be the small data set (as
before, only the subproblems A and B have been used), which may not be
suited very well for a reliable evaluation of the clustering approaches. Never-
theless, LibLinear and LibSVM also reach very good results and could often
classify documents (paragraphs) 100% correctly. Interestingly, the kNN clas-
sifier which performed poor on all other data sets could often also gain 100%.
On the contrary the previously good working classifiers BayesNet and J48
could constantly only attribute one third correctly.

Summarizing, the comparison of the different algorithms reveal that in gen-
eral classification algorithms perform better than clustering algorithms when
provided with the same (pg-gram) feature set. Nevertheless, the results of the
PAN12 experiment are very diverse and indicate that there might be a prob-
lem with the test data set itself, and that this comparison should be treated
carefully - especially when taking into account that all other experiments show
consistent outcomes.

A visualization of the average improvement for each classifier, pg-gram config-
uration and data set is illustrated in Figure 5.1. The more colored a square is,
the higher the average improvement compared to the best clustering results is.
Also here it can be seen clearly that the kNN classifier lacks significantly of at-
tributing the Twain-Wells/-Shelley documents correctly, whereas it performs
better on the Federalist Papers and especially on the PAN12 problems.

5.5. Conclusion and Future Work

Conclusion

In this chapter the automatic creation of paragraph clusters based on the
grammar of authors has been evaluated. Different state-of-the-art cluster-
ing algorithms have been utilized with different input features and tested on
different data sets. The best working algorithm K-Means could achieve an
accuracy of about 63% over all test sets, whereby good individual results of
up to 89% could be reached for some configurations on the reutilized author-
ship attribution data sets. On the contrary the specifically created documents
incorporating two and three authors could only be clustered with a maximum
accuracy of 59%.

A comparison between clustering and classification algorithms using the same
input features has been implemented. Disregarding the missing training data,
it could be observed that classifiers generally produce higher accuracies with
improvements of up to 29%. On the other hand, some classifiers perform worse
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Figure 5.1.: Improvement in Percent of Different Classifiers Compared To Best
Clustering Results.

on average than clustering algorithms over individual data sets when using
some pg-gram configurations. Nevertheless, if the maximum accuracy for each
algorithm is considered, all classifiers perform significantly better as can be
seen in Figure 5.2. Here the best performances of all utilized classification
and clustering algorithms are illustrated. The linear classification algorithm
LibLinear could reach nearly 88%, outperforming K-Means by 25% over all
data sets.

Finally, the best classification and clustering results are shown for each data set
in Figure 5.3. Consequently the classifiers achieve higher accuracies, whereby
the PAN12 subsets could be classified 100% correctly. As can be seen, a major
improvement can be gained for the novel literature documents. For example,
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Figure 5.2.: Best Evaluation Results Over All Data Sets For All Utilized Clus-
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Figure 5.3.: Best Clustering and Classification Results For Each Data Set.

the best classifier reached 87% on the Twain-Wells document, whereas the
best clustering approach achieved only 59%.

Future Work

As shown in this chapter, documents can be clustered based on grammar
features, but the accuracy is below that of classification algorithms. Although
the two algorithm types should not be compared directly as they are designed
to manage different problems, the significant differences in accuracies indicate
that classifiers can handle the grammar features better. Nevertheless future
work should focus on evaluating the same features on larger data sets, as
clustering algorithms may produce better results with increasing amount of
sample data.
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Another possible application could be the creation of whole document clusters,
where documents with similar grammar are grouped together. Despite the fact
that such huge clusters are very difficult to evaluate - due to the lack of ground
truth data - a navigation through thousands of documents based on grammar
may be interesting like it has been done for music genres (e.g. [155, 114])
or images (e.g. [44, 108]). Moreover, grammar clusters may also be utilized
for modern recommendation algorithms once they have been calculated for
large data sets. For example, by analyzing all freely available books from
libraries like Project Gutenberg, a system could recommend other books with
a similar style based on the users reading history. Also, an enhancement of
current commercial recommender systems that are used in large online stores
like Amazon is conceivable.

Finally and similarly to the previous chapters, the clustering approach should
be evaluated on data sets with different languages, and also with other clus-
tering algorithms like EM [118], CobWeb [46] or Self-Organizing Maps (SOM)
[92].
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CHAPTER 6

Related Work

This chapter summarizes other scientific work that has been published in areas
that are closely related to this thesis. In particular, an overview of recent ap-
proaches and algorithms as well as a general overview concerning the respective
chapters is given. Section 6.1 discusses related work in the field of plagiarism
detection, focussing on intrinsic methods but also briefly discussing external
approaches. Often used authorship attribution algorithms are presented in
Section 6.2, and Section 6.3 gives an overview of current author profiling ap-
proaches. Finally, Section 6.4 concludes with a summary of related work in
the field of text-based clustering.

6.1. Plagiarism Detection

Basically the two different approaches for identifying plagiarism in text doc-
uments are usually referred to as external and intrinsic algorithms [142],
where external algorithms compare a suspicious document against a given
unrestricted set of source documents - for example large databases collected
from the world wide web - and intrinsic methods are allowed to analyze solely
the document itself. A similar classification lists three plagiarism detection
categories that are currently used in practice [113]: (i) document source com-
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parison (conforms to external detection), (ii) stylometry (conforms to intrinsic
detection) and (iii) manual search of characteristic phrases. When perform-
ing the latter type - which has been found surprisingly successful in practical
situations - the examiner manually chooses a characteristic paragraph or a cou-
ple of consecutive sentences, which are then copied and pasted into common
internet search engines like Google, hoping that the search engine’s internal
algorithms will find a corresponding source document. Because this method
is very labor-intensive, an automatic cut-and-paste detection system has been
developed in [126] by using the (meanwhile deprecated) Google Web Search
API'.

Many of the approaches or at least the main ideas of recent plagiarism de-
tection algorithms have been originally proposed, elaborated and published
through the PAN workshop ”on uncovering plagiarism, authorship, and social
software misuse” [136], which has been and still is organized by the Bauhaus-
University of Weimar on a regular basis for several years. Focussing on pla-
giarism detection [143], the workshop also covers related topics like author
identification [83], author profiling [149], Wikipedia quality flaw prediction [5]
or even sexual predator identification [75].

Intrinsic Plagiarism Detection

Intrinsic plagiarism detection requires the analysis of different stylometric fea-
tures, whereby “most stylometric features fall in one of the following five cat-
egories: (i) text statistics, which operate at the character level, (i) syntactic
features, which measure writing style at the sentence-level, (iii) part-of-speech
features to quantify the use of word classes, (iv) closed-class word sets to count
special words, and (v) structural features, which reflect text organization” [208].
An overview of features that have been used in stylometry is given in [172]
and summarized in Table 6.1. In the following an excerpt of some recent in-
trinsic plagiarism detection methods incorporating some of the listed features
is given.

An approach that is very similar to the PQ-Plag-Inn algorithm (see Section
2.6), but uses character n-gram profiles to identify plagiarism is described in
[169]. With this method a profile of the whole document as well as profiles
for sliding windows traversing the document are created, whereby a profile is
a vector of normalized frequencies of all occurring character trigrams. Each
sliding window profile is then compared with the document profile by applying
a style change function which is similar to the distance metrics described in
Section 3.3. Generally, when n-grams are used often also preprocessing steps

"https:/ /developers.google.com /web-search, visited June 2014
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Type Feature Reference
character-frequency [205]
lexical character n-grams [169, 154, 80, 89, 97]
(character-based) frequency of special characters  [205]
compression rate [157, 168]
average word/sentence length [205, 73]
lexical word frequency [73, 119, 97]
(word-based) word n-grams . [154]
number of hapax dis-/legomena  [193, 205]
type-token ratio [202, 73, 205]
POS tags [168, 97]
syntactic POS n-grams [96, 97]
frequency of function words [119, 73, 205, 10, 96]
frequency of punctuations [205]
average paragraph length [205]
structural indentation [205]
greetings, farewells, signatures  [205, 168]

Table 6.1.: Excerpt of Important Features Used in Stylometric Analysis [172].

like transforming all letters into lowercase are performed. In this approach,
additionally every n-gram containing no letter characters is removed. The
approach reaches an F-score of 28% and 30%, respectively, on two different
data sets, whereby the recall is significantly higher than the precision. Finally,
also experiments have been conducted on varying the text length, with the
summarizing outcome that the recall value increases with the length of the
text, but at the cost of the precision.

Character n-grams and in particular trigrams are also used in [87]. Here, the
document is also traversed using sliding windows, but no document profile
is calculated. Instead, each window is compared against each other window
using a proposed symmetric distance score for n-grams, and each distance is
stored into a distance matrix. Thus this approach is similar to the Plag-Inn
algorithm described in Section 2.4, with the main difference that the analysis
is based on larger text windows rather than single sentences (besides the fact
that n-grams are used with a different comparison metric). While the Plag-Inn
algorithm then performs further processing using a Gaussian normal distri-
bution, this approach uses outlier identification algorithms by incorporating
Principal Components Analysis (PCA), ”a standard technique for dimension-
ality reduction, commonly applied in stylometry” [21]. On the PAN-PC-11
corpus [147] the approach could reach a plagiarism detection rate of 27.6%.
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Another approach described in [132] also uses the sliding window technique,
but is based on word frequencies and the assumption that authors use a signif-
icant set of words. After eliminating whitespaces and transforming all charac-
ters into lowercase, a vector of word unigrams is extracted together with the
respective frequencies of the words. Finally, the frequency vector of each slid-
ing window is then compared to the ”document footprint” by using a proposed
metric, and every window that has a higher distance than a predefined thresh-
old is marked as potentially plagiarized. The approach achieved an overall
score of 32% over the intrinsic part of the PAN-PC-11 corpus, and was also
tested on the external part of the corpus, where an F-score of about 16% could
be reached.

An algorithm that tries to recognize paraphrased sections based on the phrase
structure of sentences and the structure of verb phrases is described in [195].
In this work, sentence-initial and sentence-final phrases are inspected together
with predefined semantic classes of verbs [105] by part-of-speech tagging. It
uses POS-tags only, i.e., without referring to computationally intense full parse
tree, in combination with several other linguistic features. In an evaluation
using whole chapters of different books an F-score of over 75% could be gained.
Nevertheless, the experiment has been conducted in a way that cannot be
directly compared to intrinsic plagiarism detection, but rather to results of
authorship attribution.

[157] discusses the comparison of binary strings calculated from word groups
like nouns or verbs using complexity analysis, i.e., the Kolmogorov complexity
[93]. In particular, statistical compressing algorithms have been trained by
using the respective occurrences of word groups over the whole document,
and then utilized to compress a given text segment. The main idea can be
summarized in the following hypothesis: the similar the writing style of a
paragraph is compared to the document, the better the compression algorithm
works, i.e., the more the paragraph can be compressed. Accordingly, potential
plagiarism is then detected by analyzing the compression rate of different text
fragments. It has been shown that by additionally incorporating complexity
analysis together with neural networks, the accuracy of intrinsic plagiarism
detection algorithms can be increased by up to 4% (on the PAN 09 intrinsic
plagiarism competition corpus [40]).

Further research using complexity analysis has shown that even non-trained
compression algorithms like Lempel-Ziv [206] can be used to distinguish au-
thentic from non-authentic text [173, 163]. Hereby the basic assumption -
which has been solidified - is that real authors frequently repeat words and
ideas to increase readability, which leads to a higher compression rate. This
idea has been successfully used to distinguish authentic from non-authentic
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Section: 0 File: 1 Sentence: 0

Figure 6.1.: Example of a LTAG-spinal tree?.

text, i.e., coherent text that has been written by real human authors from
computer-generated text like automatically created spam [164].

As an alternative to the heavily used pg-grams throughout this thesis, also
lexicalized tree-adjoining-grammars (LTAG) could be considered. Originally
proposed in [79] as a ruleset to construct grammar syntax by using partial
subtrees, LTAG’s or the linguistically enhanced LTAG-spinal variant [159]
may also be used to analyze the grammar structure of sentences. The basic
idea is thereby to provide a set of rules to rewrite trees instead of symbols like
in context-free grammars. Finally, the result of multiple tree rewriting leads
to grammar trees which comprise the subtrees inferred from the applied rules,
and which can be parsed by using targeted LTAG parsers. An example? of an
LTAG-spinal derivation is illustrated in Figure 6.1.

External Plagiarism Detection

Given a suspicious document and a large document collection, the task of ex-
ternal plagiarism detection basically consists of three phases as can be seen in
Figure 6.2 [174]: (i) retrieving relevant documents from the collection (source
retrieval), (ii) comparing the candidate documents with the suspicious docu-
ment for similarity (text alignment) and (iii) knowledge-based post-processing,
where similar text pairs are filtered, cleaned and presented to the user. One
of the key criteria for good working plagiarism detection algorithms is thereby
the quality of the source document database, which may be stored statically as
a result from earlier data gathering, but may also be available dynamically by
utilizing search engines, for example. Moreover, a hybrid variant is possible.

To be able to compare current external plagiarism approaches in more detail,
the two major subtasks source retrieval and text alignment are often inspected

2LTAG-spinal: Treebank and parsers, http://www.cis.upenn.edu/~xtag/spinal, visited
June 2014
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Figure 6.2.: Overview of the External Plagiarism Detection Process [174].

individually in scientific communities. In the following an overview of strate-
gies covering these subtasks is given, which is mainly based on the survey
paper of Potthast et al. [144].

Source Retrieval

Most of the source retrieval approaches are based on the following five-step
strategy:

1. Chunking: As a first step the suspicious document is split into several
text chunks, which represent the basis for further analyses. Commonly
used solutions include the chunking by a predefined number of words
[196], sentences [200], lines [42] or paragraphs [101], no-chunking (pro-
cessing the whole document at once) [177], and also the utilization of
advanced tools like TextTiling [68] to split the document by topically
unrelated paragraphs [66]. Additionally, intrinsic plagiarism approaches
are used to identify irregular paragraphs or sentences [129].

2. Keyphrase extraction: Probably one of the most important steps
for source retrieval is the selection of phrases, words or other fragments
out from the previously calculated text chunks. The global aim is to
"select only those phrases (or words) which maximize the chance of re-
trieving source documents matching the suspicious document” [144]. As
further processing is often time consuming and computationally costly,
an additional objective is the quantitative reduction of relevant text.
Algorithms often combine different strategies, including the extraction
of the top noun phrases [42] and keyphrases [66] using different existing
tools [16, 41] or the usage of n-grams with 2 < n < 10 [196, 200, 77].
To find relevant n-grams, Pat Trees [59] or n-gram reference corpora
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extracted from external sources like Google Books are used [102, 101].
Additionally, the information retrieval measure ¢ f —idf is repeatedly ap-
plied to identify the relevance of n-grams or words [42, 177], whereby
the document frequencies are generally obtained from existing external
corpora.

3. Query Formulation: Using the keywords extracted from the previous
step, one or more queries are formulated which are passed to the API
of a search engine. The aim is to create queries in a way that the pos-
sibilities of the search engine in use are exploited as much as possible.
Thereby many plagiarism detectors use search engines that operate on
the ClueWeb corpus 20093, a corpus that consists of about one billion
multi-language web pages. Examples of publicly available search en-
gines incorporating the corpus are Indri?, which among others supports
phrasal search, or ChatNoir [145], which makes use of PageRank and
SpamRank scores.

4. Search Control: The task of a search controller is to schedule the
queries to the search engine and to dynamically react to incoming search
results. Depending on the size of the corpus and the number of queries, it
is advisable to reduce or reformulate queries in order to reduce processing
time. For example, in an optimal scenario the first query result already
reveals the source of plagiarism, and thus no further queries should be
scheduled. In reality current algorithms have to consider deeper strate-
gies to decide whether current queries should be reformulated or further
queries should be aborted. For example, in [66] queries are dropped if
60% of its terms are present in a previously obtained document, or in
[101] the submission of queries is stopped if the amount of already found
plagiarism is above a certain threshold.

5. Download Filtering: Finally, the algorithms have to decide how much
of the query results are relevant for the further text alignment process,
i.e., which documents should be downloaded and added to the set of
potential candidates. A straight forward approach is thereby to consider
the top-k results, e.g., k=1 [66], k = 3 [200] or k£ =10 [42] and to down-
load them if certain conditions hold. For example, documents are down-
loaded "when at least 90% of the words in a 160-character snippet are
contained in the suspicious document” [144, 42] or the cosine-similarity of
the query result and the suspicious document exceed a certain threshold

3http://lemurproject.org/clueweb09, visited June 2014

“http://lemurproject.org/clueweb09/index . php#Services, visited June 2014
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[102]. Additionally, also the frequency of a specific documents appearing
in several different query results are considered [101].

Using the Webis-TRC-2012 corpus [146] the best tradeoff between recall and
precision of source retrieval approaches reaches an F-score of 47% [200]. It is
based on sentence chunking in combination with n-gram keyphrase extraction
and downloading the top three query results. A different approach that splits
the suspicious document by topically related paragraphs [66] achieves a high
precision of 63% at the cost of a low recall, resulting in an overall F-score of
44% over the same data set.

Text Alignment

Within the text alignment phase the suspicious document is compared to
a possible source document, obtained from the previously described source
retrieval. The global aim is to find matching text passages of both documents,
even if the text has been altered or obfuscated such that - beside stop words
- nearly no lexical similarity is present. In the following an overview of the
basic three-step process is given [144]:

1. Seeding: In the first step, text matches (usually referred to as ”seeds”)
between the suspicious and the source document are identified, whereby
this can be exact matches or matches that are based on one or more spe-
cific seed heuristics. The global aim is thereby not to already produce
final plagiarism detection results, but to find as much reasonable plagia-
rism origins as possible, which are then extended in the subsequent step.
Examples for seed heuristics include sorted word-n-grams [135, 182, 177],
unsorted stop word-n-grams [170] or word-n-grams which contain at least
one named entity [160]. Moreover, seeds are also created using sentence
pairs that exceed a certain similarity threshold [102]. Often also prepro-
cessing steps like the removal of whitespaces, cases, stop words (if not
used) or word stemming are applied.

2. Extension: Similar to the sentence selection algorithm presented in
this thesis (see Section 2.4.2), the aim of the extension phase of external
plagiarism detectors is to merge previously found seeds into aligned text
passages. The basic idea is to present whole passages of plagiarism
rather than multiple seeds, especially if any kinds of (word) n-grams have
been used as seeds. For example, word-3-grams should be extended to
whole sentences or even paragraphs if possible. To do this, most of the
algorithms are rule-based and combine seeds if they are adjacent in the
source as well as in the suspicious document. Additionally, gaps between
different seeds are also incorporated if they fulfill certain thresholds. For
example, in [177] two seeds are merged if the gap between them is less or
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equal to 4,000 characters. While most of the algorithms use rules like in
the previous example, also other approaches exist that use unsupervised
learning, e.g., by utilizing clustering algorithms [135].

3. Filtering: As a postprocessing step, the detected passages are once
again filtered if needed. Basically, passages are excluded from the final
result set if they do not meet certain criteria like a minimum character
size [176, 134], for example. Other approaches discard passages shorter
than a fixed amount of words that fall below a given cosine-similarity
[55]. Also, overlapping text passages are revised in this phase, e.g., if
the Jaccard similarity coefficient® of overlapping words is below a certain
threshold [103]. Summarizing, the filtering step is not crucial to the
algorithms, but is needed to be able to present the result nicely to a
user. This step may also be integrated in the previous extension phase.

As a reference of performance, algorithms could reach an overall plagiarism
detection rate® of over 80% [182, 102], whereby the precision is most often
significantly higher than the recall.

In conclusion, it can be stated that the difficulties for external plagiarism detec-
tors are located in the source retrieval part, as can be inferred from evaluation
results. Thereby the retrieval of relevant documents is highly dependent on
the underlying data set. Beside the employed algorithms, the latter is also a
key criterion for good working commercial plagiarism tools, which are briefly
summarized in the following section.

Commercial Software

In recent years the use of commercial plagiarism detection software has be-
come a standard practice in academia, and is increasingly required as a manda-
tory step before submitting (doctoral) theses. An extensive evaluation of the
powerfulness and expressiveness of current software has been performed by
Weber-Wulff et al. [197, 198] The authors tested 26 systems and stated that
only a small amount is ”partly usable”, i.e., the best systems only found 60-
70% of plagiarism. Moreover, plagiarism having books as sources, plagiarism
by translation or structural plagiarism” have not been found by any system.
Additionally the authors claim that the usability and in particular the pre-
sentation of results is poor in most systems. For example, for a well-known

*http://en.wikipedia.org/wiki/Jaccard_index, visited June 2014
Sthe detection rate used incorporates F-score as well as the granularity value

"the reasoning, arguments or footnotes are reused in the same order, but the actual text is
rewritten individually
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Category Software Reference
. Turnitin www.turnitin.com
partially useful
Copyscape WWW . copyscape. com
Ephorus www . ephorus. com
PlagA .pl .
marginally useful agAware www.plagaware. com
PlagScan www.plagscan.com
Plagiarism Detect www.plagiarism-detect.org
useless for academic  PlagTracker www.plagtracker.com
purposes Plagiarisma www.plagiarisma.net

Table 6.2.: Results of a Recent Study”? on Commercial Plagiarism Detection
Systems.

suspicious thesis® submitted to the systems, some of them report more than
thousand plagiarism sources, of which the majority is based on text fragments
of less than 20 sentences. In reality it has been found by manual crowd-sourced
efforts that there are only 131 sources.

In a recent study” many systems have been tested and categorized. An excerpt
of the results is given in Table 6.2.

The quality of commercial plagiarism detectors is highly dependent on the
underlying data that can be consulted when searching for plagiarism. For ex-
ample, the mostly used'® tool Turnitin claims that their “database contains
45+ billion web pages, 337+ million student papers and 130+ million articles
from academic books and publications” that can be accessed while search-
ing. Unfortunately, the question of how the checks are performed and which
algorithms are used remains unclear, which is understandable from a business
point of view.

6.2. Authorship Attribution

The Federalist Papers

Without doubt the most influential work in the field of authorship attribution
is the study of Mosteller and Wallace on the authorships of ”The Federalist

8the dissertation of Karl-Theodor zu Guttenberg from 2009

“HTW Berlin Plagiats Portal, Softwaretest 2013, http://plagiat.htw-berlin.de/
software-en/test2013, visited June 2014

according to the Turnitin website: http://turnitin.com/en_us/features/fags, visited
June 2014

“http://turnitin.com/en_us/features/originalitycheck, visited June 2014
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Papers”'? [119] in the second half of the 20th century. Where beforehand only
manual statistical analysis of text documents have been conducted (e.g. [202]),
the authors successfully discriminated the authorships of nearly hundred po-
litical essays by applying a fairly simple statistical analysis of frequencies of
common words like articles (e.g. ”’a”, 'the”) or prepositions (e.g. ”in”, ”of’)’.
For the 12 essays with questionable authorships (usually referred to as ”the
disputed papers”), a plausible answer could be given for the first time based on
a scientific analysis: ”In summary, we can say with better foundation than ever
before that Madison was the author of the 12 disputed papers.” [119, 49].

Since then many approaches revisited the Federalist Papers or used them as
a test data set, which is also the case in this thesis. For example, in a popular
study by Holmes et al. three novel features have been tested by using the
papers, whereby “the techniques examined are a multivariate approach to vo-
cabulary richness, analysis of the frequencies of occurrence of sets of common
high-frequency words, and use of a machine-learning package based on a ‘ge-
netic algorithm”’ [74]. One of the first attempts which applied support vector
machines to the field of authorship attribution also analyzed the disputed pa-
pers [49]. In this work an author-separating mathematical hyperplane could
be found that is based only on the occurrences of the three words ”to”, "upon”
and ”"would”. With this method all disputed papers were also attributed to
Madison. Another approach [22] also tried to find hyperplanes with linear
programming techniques, again using only three words: ”as”, "our”, upon”.
Also in this paper the authors concluded with the same result regarding the au-
thorship of the disputed papers. Generally, more than 20 studies (the number
is hardly complete” [80]) on the authorships of the disputed Federalist Papers
have been published [153], nearly all concluding and confirming the original
result of Mosteller and Wallace, which claim that Madison is the author of the

disputed documents.

Approaches

Using several features, machine learning algorithms are often applied to learn
from author profiles and to predict unlabeled documents. Among methods
that are utilized in authorship attribution as well as the related problem classes
like text categorization are support vector machines [167, 154, 38], neural
networks [194], naive bayes classifiers [115] or decision trees [195]. Thereby
the list of features ranges from lexical, syntactic or semantic categories to
application-specific features (e.g. the ”technical structure” like fonts, colors,
images or hyperlinks [1]) as depicted previously in Table 6.1.

12The Federalist Papers are a collection of political essays written by Alexander Hamilton,
James Madison and John Jay in 1787/88 for the citizens of New York, with the aim to
convince the people to adopt the newly formulated constitution of the United States.
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In the following an excerpt of approaches using these features is given. Detailed
and comprehensive surveys on the topic are given by Holmes [72] for methods
until 1994, by Juola [80] until 2006 and by Stamatatos [168] and Koppel et al.
[97] until 2009, respectively. An overview of recent approaches can be found
in the PAN 2013 overview paper [83].

Lexical Features

Although the number of proposed features has been increasing in the last
years, it has been shown that simple word-based statistics are among the best
to discriminate between authors. For example, on a test data set using various
chapters of twenty different books, an accuracy of 99% could be gained by only
using the vectors of most frequent words [9]. The basic principle behind the
analysis of these so-called function words is that they are topic-independent
and that they are used mainly unconsciously by an author. Thus, function
words are heavily used in authorship attribution (e.g. in [204] as the only
features given to a support vector machine), or represent at least part of the
feature list. Thereby a main challenge is to define the number of words that are
considered, which ranges from 100 [25] over 480 [96] up to 1,000 [165] words.
Moreover, also approaches exist that include all occurring words, for example
in [38] an accuracy of 60-80% could be gained on a German newspaper dataset
by feeding all words into a support vector machine.

Also in authorship attribution, n-grams are used successfully to distinguish
between writers. A recent evaluation [64] comparing almost fourty different
features concludes with the result that n-grams with n = 2,3,4 gain the best
results, e.g., discriminating two columnists of The Telegraph with an accuracy
of up to 94%, three authors with 91% and ten authors with up to 79%. Inter-
estingly, the accuracy drops significantly with n > 5. Profiles of unigrams of
punctuation marks are also in the top results of the study. Finally, and con-
forming to other tests, the best result could be gained by using word profiles
combined with unigrams of punctuation marks. Other work also experimented
with n-grams in other languages than English (e.g. Greek [139]) and proved
their language-independence, which is probably the most significant advan-
tage of n-grams in general. Nevertheless, some algorithms and workarounds
are needed to extract n-grams from certain languages like Traditional Chinese
[125] or Japanese [122]. Controversially to the language-independent nature
of n-grams, a study [62] revealed that n-grams can also be used to detect the
language of short query-style texts (with best results using a Naive Bayes
classifier on 5-grams).
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Syntactic Features

The first attempt to go beyond character- and word-level was proposed in
1996 [13], where also syntactic patterns have been analyzed. By using the
so-called TOSCA scheme, which is different from the nowadays commonly
used Penn Treebank set, the frequencies of (complex) grammatical rewrite
rules are examined and compared to word-based methods on the same corpus.
Strengthened by many experiments, the pioneer study concludes with the
suggestion that “syntactic annotation provides excellent clues for authorship
attribution, and that measures focusing on syntactic creativity are especially
promising.” [13]

Since then many authors included syntactic features in their studies. For
example, in [50] the previously described rewrite-rule technique has been sim-
plified, compared to and combined with many other features like length of
noun phrases, sentences, function word frequencies, POS trigrams and seman-
tic features. In experiments using (only) five works of three novel authors, the
syntactic features performed worst when examined isolated (although reach-
ing an accuracy of over 85%), but it could be shown that by adding syntactic
information to the set of features, the performance of authorship attribution
systems can be enhanced significantly (reaching up to 97% on that data set).

A further example of an approach that uses syntactic information to discrimi-
nate the writers of short!® texts is proposed in [71]. Also here the frequencies
of rewrite rules are considered, but by using a partial parser [3] instead of a full
parser. The outcome of a partial parser is a structural analysis of sentences
that contains deeper information than just pure POS tags, but less than that
of full parse trees. The result is therefore not that exact and to can be noisy
to some extent. In an evaluation of samples of two authors only an accu-
racy of over 90% could be achieved by combining this feature with another
syntactic feature (frequencies of POS bigrams) and other lexical features like
vocabulary-richness or average word/sentence lengths.

Similar to the grammar tree analysis conducted within this thesis, in [112]
the authors also experimented with structural parse tree features for other
text categorization problems like nationality detection or sentiment analysis.
Thereby also parse trees of sentences are calculated, of which several features
like average tree branch factors, tree depths, frequencies of subtrees according
to specified rewrite rules or subtree skeletons are extracted. As illustrated in
Figure 6.3, the latter incorporate the structure patterns of parse trees, but
without the concrete labeling of (inner) nodes like with pg-grams. In addition
to the tree features, also common characteristics like word n-grams, POS tags

3less than 500 words, i.e., approximately 20-40 sentences
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Figure 6.3.: Grammar Tree Skeletons Taken From and Used In [112].

or function words have been examined for an evaluation on manually created
test data sets. It is shown that the basic word and POS tag features led to the
best results when examined individually, e.g., reaching over 80% on nationality
detection. The tree features alone led to significantly less accuracy, but it could
be shown that by combining these structural features - especially the skeletons
- with the common features, the overall result can be enhanced significantly.

Other Features

As already can be seen from the previous examples, most of the current ap-
proaches do not include only one feature, but several distinct measures. The
number of utilized features in authorship attribution studies was estimated
by Rudman in 1998 to a number of over 1,000 [152], and thus a challenge
is to select the most appropriate ones. For example, the experiment in [205]
used different machine learning algorithms with more than 270 distinct fea-
tures, coming from many lexical, syntactic, structural and content-specific
categories. An evaluation on English and Chinese online-newsgroup messages
reached an accuracy of 70% up to 95%. Notably and conforming to the results
presented in this thesis, the support vector machine classifier outperformed all
other evaluated learning algorithms also in this study.

Besides the common learning algorithms like Naive Bayes, decision trees or
support vector machines, also Markov chains have been utilized. For example,
in [88] chains of letter bigrams are computed and tested on 380 random docu-
ments from Project Gutenberg. In this experiment, an attribution rate of 74%
could be gained using the Markov chains. Moreover, also similar compression-
based approaches like in plagiarism detection are used. A study [111] com-
paring the compression algorithms RAR, GZIP and LZW on different data
sets (one of them being the Federalist Papers) reveals that such approaches

126



6.3. Automatic Author Profiling

can gain an accuracy of approximately 60%-90%, whereby the result is heavily
dependent on the compression algorithm and the size of the training data.

Another interesting approach used in authorship attribution that tries to de-
tect the writing style of authors by analyzing the occurrences and variations
of spelling errors (”idiosyncrasies”) is proposed in [96]. It is based on the as-
sumption that authors tend to make similar spelling and/or grammar errors,
whereby nearly hundred different error features are considered. Examples of
such measures are repeated/missing words, mismatched tenses, missing hy-
phens, repeated/inserted letters, single consonants instead of double, or the
confusion of concrete letters like 'x’ and 'y’. An evaluation on English email
discussion group documents reached an accuracy of nearly 70% by solely using
spelling idiosyncrasies with decision trees.

A historic example of the utilization of a specific misspelling of the word
“touch” that has been used in court to identify the writer of a document is
given by Wellman [199] and summarized in [80] as follows: ”"He [Wellman]| had
noted this particular misspelling, and (under the guise of eliciting handwriting
samples) was able to persuade the witness to write a phrase containing “touch”
while on the witness stand. Showing that she had in fact written *toutch,’
Wellman was able to satisfy the court that was how she spelled that particular
word, and hence that the document with that misspelling had been written by
the witness.”

Originally coming from the data visualization field, the authors in [84] applied
their techniques for the analysis of literary works. In this study, text charac-
teristics like average sentence length, frequencies of function words or hapax
legomena (words that occur exactly once) are visualized in order to provide a
framework for users to immediately see outstanding facts. Besides an analysis
of the Bible, also novels of Mark T'wain have been visualized. Figure 6.4 shows
an excerpt of the visualizations provided in the paper, where it can be seen
that the book ”The adventures of Huckleberry Finn” has significantly other
characteristics than other works by the same author.

6.3. Automatic Author Profiling

The profiling of authors falls under the problem class usually referred to as
text categorization [158], whereby also here an often applied concept is the uti-
lization of different machine learning algorithms based on a previously selected
set of features. The main problem types are differentiated between single-label
and multi-label classification problems, respectively, where the first type as-
signs only one label for a document (e.g. the gender or age of the author) and
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(a) Function words (b) Hapax legomena

Figure 6.4.: Visualization of Different Text Features. Source: [84].

the latter type is allowed to assign more labels (e.g. the content type of an
article: sports, religion, science, etc.) [192].

Within the single-label text categorization problem the gender and age of the
author of a text document has been analyzed frequently. Thereby the first
attempts to distinguish between women and men were motivated by sociolog-
ical studies (e.g. [18, 33]), which state that "in postindustrial settings, women
are often characterized as more emotionally extravagant, communicatively in-
direct, and solidarity seeking than men”, whereby ”linguistic evidence provided
in support of these views includes women’s exploitation of [...] their frequent
use of tag questions [...] and their frequent use of affect-enhancing linguistic
indexes such as intensifying adverbs and modals”. [18]

With the progress in text categorization and authorship attribution, many
approaches also tried to automatically detect meta-information like the gender
and age of authors, most often by reusing or adapting stylometric features
that have been used in other fields. Beside this core information also many
other characteristics have been profiled, including the level of education, the
geographical origin or psychological types like extrovertism or neuroticism. In
the following some examples of current profiling approaches are given.

Gender and Age

Based on the work of [95] that analyzes the gender of the author and also
automatically distinguishes between fiction and non-fiction documents, the
web blog corpus created by Schler et al. - which is also used in this thesis -
has been created to classify gender and age based on many style and content
features [156]. Beside basic features like the frequencies of function words,
pronouns, determiners or the average number of words per post, also blogwords
(neologisms) like ’lol’, ’haha’ or "ur’ as well as the frequency of hyperlinks have
been analyzed. With a proposed so-called Multi-Class Real Winnow learning
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algorithm, the gender of the authors of the web blogs could be profiled with
an accuracy of 80%, and the age with an an accuracy of 76%, respectively.
Similarly to the profiling results described in this thesis, the authors also report
significant problems discriminating mid-twenty year olds from mid-thirty year
olds.

An extension to the previous work that additionally attempts to classify the
language and personality of a writer has been proposed in [8] by utilizing tax-
onomies of POS tags combined with other style and content-specific features.
By using a Bayesian Multinomial Regression learning algorithm [52] on the
same web blog corpus, 76% accuracy on gender and 77% accuracy on age
could be gained.

Two new feature sets using POS tag patterns are proposed in [120] to en-
hance current state-of-the art profiling approaches. In simplified terms, the
frequencies of POS-n-grams (where n is not fixed) are collected, rated in terms
of significance and used as features if some conditions hold. An evaluation
performed also on a (different) blog corpus, the effectiveness of the two new
features has been tested. The best result using a support vector machine and
incorporating the large number of nearly 24,000 features could enhance the
previously described result of Schler et al. by 8%, i.e., reaching 88% on their
data set.

In [24] the authors try to automatically expose the gender of writers of Twit-
ter messages by incorporating the huge amount of over 15 million features.
The origins of the features are thereby quite simple and can be categorized
into character {1-5}-grams and word {1-2}-grams of the actual tweets, com-
plemented by the corresponding n-grams of the user’s profile information like
the screen name (display name), full name or the profile description. Due to
the large amount of features standard learning algorithms were not feasible,
and therefore the authors used a parameter-optimized version of the Balanced
Winnow algorithm [107]. As expected, the best result could be gained by
using the full name n-grams, reaching 89% accuracy. Combining all types
of n-grams, the result could be enhanced further by 3%. By analyzing the
tweets only, i.e., without profile information, the gender could be attributed
to about 75% correctly. In addition, the latter result has been compared to
the manual prediction of humans - conducted through the Amazon Mechanical
Turk framework - and it could be shown that the computer-based algorithm
works significantly better than the human judgements, which achieved only
an accuracy of about 60-66%.

An interesting approach that also analyzes the gender of web blog authors

is presented in [201]. Besides commonly used features in the field of text
categorization the focus has been laid on blog-specific features. The approach
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thereby considers the usage of background colors, emoticons like ;=) or :-D,
punctuation marks or fonts. It is shown that the prediction of gender can be
enhanced by using these features. Moreover, as a result from the experiment,
a list of words which occur in male but rarely/not in female blogs (e.g. "psst”,
Yincome” or "wasup”) and vice versa (e.g. "muah”, "jewelry” or "kissme”) is
presented. On the other side, examples of the most gender-discriminant words

2 2

of the study are: “peace”, "shit”, "yo”, "man”, "fuck”, "damn”.

Other Information

Many studies (e.g. [7, 109]) have analyzed the five psychological traits: neu-
roticism, extraversion, openness, agreeableness and conscientiousness. One
key problem for verifying such approaches is thereby the lack of test data,
i.e., the ground truth is always manually created and thus subjective to some
extent. For example, for the evaluation in [140] psychology students have been
asked to write a random essay within 20 minutes, whereby the categorization
of personality has been made by filling out an additional questionnaire. In
another paper [130] web blogs have been psychologically and gender-wise an-
alyzed. Here, 71 bloggers have been asked to submit previously written text,
and to additionally fill out a sociobiographic questionnaire as well as an on-
line implementation of a psychological categorization test. By inspecting only
eight different POS frequencies like the number of nouns, adjectives or articles,
every personality trait of the authors could be predicted with an accuracy of
50-60% in this study. Additionally it has been found that openness is the
only trait which has influence on the F-score, which may be correlating to the
fact that openness is also seen as a factor of intellect and is thus more easily
measurable [70].

English emails have been profiled into ten classes including gender, age, geo-
graphic origin or level of education as well as into the five psychological traits
in [43]. The authors use several character-level, lexical and structural features
and report a similar accuracy for gender classification as the outcome pre-
sented in this thesis, but show a worse result for age classification. But it has
to be stressed that emails are typically significantly shorter than blogs, and
thus the result should not be compared directly.

With the recent rise of social media networks, also content such as chat lines,
Facebook postings or tweets have been analyzed and automatically profiled.
It is shown (e.g. in [47] or [116]) that a well-defined set of style and content
features can be used to expose meta information of chat logs, also in other
languages such as Spanish. Nevertheless, the authors in [137] show that the
application of common text categorization techniques using natural language
processing is challenging - but possible - when facing highly limited data sets.

130



6.4. Text-Based Clustering

It is demonstrated that even for text samples containing only approximately
12 tokens, the classification of gender and age is feasible.

Beside gender and age (older/younger), also the political affiliation has been
successfully profiled in [35]. For the study, manuscripts of parliament speeches
of Swedish politicians have been used, whereby only speakers for whom more
than 20 manuscripts exist have been taken into account. The political affili-
ation has been categorized manually into either left- or right-wing. By only
utilizing word-based features extracted from the 200 first words of the speeches,
the authors report an accuracy of nearly 90% for the political affiliation by
using a support vector machine.

6.4. Text-Based Clustering

Most of the traditional document clustering approaches are based on occur-
rences of words, i.e., inverted indices are built and used to group documents.
Thereby a unit to be clustered conforms exactly to one document. The main
idea is often to compute topically related document clusters and to assist web
search engines to be able to provide better results to the user, whereby the
algorithms proposed frequently are also patented (e.g. [6, 27]). Regularly ap-
plied concepts in the feature extraction phase are the term frequency ¢ f, which
measures how often a word in a document occurs, and the term frequency-
inverse document frequency tf — idf, which measures the significance of a
word compared to the whole document collection. An example of a classical
approach using these techniques is published in [100]. In this approach, a
modified version from the original K-Means algorithm is used, which at first
performs seed selection, i.e., searches for possible cluster centers, and subse-
quently assigns each document to one of the seeds. The approach is evaluated
against different corpora containing from about 1,000 up to 9,000 documents.
The performance is measured by the correct cluster assignment according to
predefined topics, whereby an accuracy of 50% up to 80% could be gained,
depending on the data set.

Beside the straight-forward computations of ¢f and tf — idf weights, some
algorithms also utilize other ideas like the analysis of documents which are
linked by co-citations [27]. Another method to cluster documents by using
suffix trees instead of simple word frequencies is proposed in [203]. After
cleaning the document, suffix trees are calculated for words and phrases and
used to create base clusters. In the final step, the latter are combined into
final clusters, i.e., clusters are merged if they are similar according to some
measures. With an accuracy of about 40% on a web document collection, it is
shown that suffix trees perform better than common algorithms like K-Means
(at least for the data set used).
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The literature on cluster analysis within a single document to discriminate
the authorships in a multi-author document like it is done in this thesis is
surprisingly sparse. On the other hand, many approaches exist to separate
a document into paragraphs of different topics, which are generally called
text segmentation problems. In this domain, the algorithms often perform
vocabulary analysis in various forms like word stem repetitions [141] or word
frequency models [150], whereby ”methods for finding the topic boundaries
include sliding window, lexical chains, dynamic programming, agglomerative
clustering and divisive clustering” [30]. Despite the given possibility to modify
these techniques to also cluster by authors instead of topics, this is rarely done.
In the following some of the existing methods are shortly summarized.

Probably one of the first approaches that uses stylometry to automatically
detect boundaries of authors of collaboratively written text is proposed in [57].
Thereby the main intention was not to expose authors or to gain insight into
the work distribution, but to provide a methodology for collaborative authors
to equalize their style in order to achieve better readability. To extract the style
of separated paragraphs, common stylometric features such as word/sentence
lengths, POS tag distributions or frequencies of POS classes at sentence-initial
and sentence-final positions are considered. An extensive experiment uses a
data set which has been created by ten students that were asked to summarize
an episode of a television episode, whereby one student described the first
half and another student the second half. In conclusion, the authors state
that styolmetric features can be used to find authorship boundaries, but that
there has to be done additional research in order to increase the accuracy and
informativeness.

In [63] the authors also tried to divide a collaborative text into different single-
author paragraphs. In contrast to the previously described handmade corpus,
a large data set has been computationally created by using (well-written) arti-
cles of an internet forum. At first, different neural networks have been utilized
using several stylometric features. By using 90% of the data for training, the
best network could achieve an F-score of 53% for multi-author documents on
the remaining 10% of test data. In a second experiment, only letter-bigram
frequencies are used as distinguishing features. Thereby an authorship bound-
ary between paragraphs was marked if the cosine distance exceeded a certain
threshold. This method reached an F-score of only 42%, and it is suspected
that letter-bigrams are not suitable for the (short) paragraphs used in the
evaluation.

A two-stage process to cluster Hebrew Bible texts by authorship is proposed
in [94]. Because a first attempt to represent chapters only by bag-of-words led
to negative results, the authors additionally incorporated sets of synonyms
(which could be generated by comparing the original Hebrew texts with an
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English translation). With a modified cosine-measure comparing these sets
for given chapters, two core clusters are compiled by using the ncut algorithm
[37]. In the second step, the resulting clusters are used as training data for a
support vector machine, which finally assigns every chapter to one of the two
core clusters by using the simple bag-of-words features tested earlier. Thereby
it can be the case, that units originally assigned to one cluster are moved to
the other one, depending on the prediction of the support vector machine.
With this two-stage approach the authors report a good accuracy of about
80%, whereby it should be considered that the size of potential authors has
been fixed to two in the experiment. Nevertheless, the authors state that their
approach could be extended for more authors with less effort.

As a last example, a mathematical approach that splits a multi-author doc-
ument into single-author paragraphs is presented in [53]. In the first step
the document is divided into subsequences of consecutive sentences that are
written by the same author. Roughly speaking, this is done with a stochastic
generative model on the occurrences of words, where the maximum (log-joint)-
likelihood is computed by applying Dijkstra’s algorithm on finding paths.
Thereby the 500 most frequent words, represented as binary vectors (word
occurs / doesn’t occur) constitute the input for the calculation. After the
boundaries between authors are found, a clustering algorithm using eigenvec-
tors of matrices is proposed to group together subsequences written by the
same author. As a consequence, text segments can be attributed to the same
author, even if the segments are widely apart from each other. Moreover, the
number of clusters is determined automatically and has not to be predefined.
An evaluation on manually created multi-author documents from blog-posts
and writings of New York Times columnists yields an accuracy of 50-60%.
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CHAPTER 7/

Conclusion

Textual plagiarism is a frequently emerging problem in modern society, espe-
cially due to the fact that more and more text documents have been made
publicly available through large literary databases or published work that can
be found by search engines. Given the huge amounts of possible sources, it
has become easier to find appropriate passages that can be reused, where on
the other hand the automatic detection becomes harder.

As one possible countermeasure, this thesis introduced three intrinsic plagia-
rism algorithms, which solely investigate a given suspicious document. The
key concept is thereby the analysis of the grammar syntax that is used by au-
thors to formulate their sentences, in combination with the assumption that
the syntax is used mostly unconsciously and that this information can be used
to distinguish between writers. In other words, if the style of a document is
largely consistent except for specific parts, the latter are likely to be written
by a different author.

Once the grammar of authors can be automatically analyzed, the idea can also
be applied to related problems like authorship attribution, author profiling
and the decomposition of multi-author documents, which has been done in



7. Conclusion

this thesis. In the following a short summary of the contributions on the
respective subjects is given.

Intrinsic Plagiarism Detection

In this thesis three different variants to intrinsically detect plagiarism in text
documents have been proposed. The main idea is to split a document into
single sentences and to analyze their grammatical structure. At first, the
grammar trees of sentences are compared against each other, which results in
distances that can be analyzed. If then a specific sentence differs significantly
with respect to all other sentences, this sentence is marked as suspicious. To
make the final prediction, also an algorithm has been proposed that combines
single sentences into whole plagiarized sections according to different parame-
ters. Second, a variant has been depicted which only uses part-of-speech tags,
whereby the distance comparisons are based on dynamic programming algo-
rithms. Finally, a third variant computes profiles from the grammar trees and
uses sliding windows to compare portions of the text to the profile of the whole
document. All variants have been evaluated using a state-of-the-art data set,
revealing promising results, especially for the latter variant which outperforms
current state-of-the-art algorithms.

Authorship Attribution

The idea of creating profiles from grammar trees of sentences has also been ap-
plied to the field of authorship attribution. Here, a profile of mostly occurring
grammar patterns is calculated for each candidate author, and the resulting
profiles are used to predict the author of an unlabeled document. The predic-
tion has thereby been performed by either using respective distance metrics or
by utilizing classification algorithms from the machine learning field. Experi-
ments showed that authorship attribution works well by using both proposed
methods, indicating small benefits for the classification algorithms.

Author Profiling

Machine learning algorithms have also been used with grammar profiles to
estimate the gender and age of authors. Using a large blog data set, evaluations
revealed promising results and indicate that the grammar of writers can be
used to profile meta information from authors, but that there exist certain
problems distinguishing specific age groups with this methodology.

Decomposition of Multi-Author Documents

Finally, the previous ideas have also been adapted to be able to detect different
authorships in a collaboratively written document. By using grammar profiles
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of paragraphs, different clustering algorithms have been evaluated to determine
paragraph groups of same authorships. Evaluations showed that this approach
is feasible, but detailed experiments indicate that the classification algorithms
used in the authorship attribution and profiling domains perform better than
the clustering algorithms.

In summary, all research questions stated in Section 1 can be answered with
a short and simple "yes”: it has been shown that solely the utilization of
grammar syntax analysis like it has been done in this thesis can be used to
identify plagiarism, assign authorships, profile authors and to identify the
portions of different authors in a collaboratively written document. With
respect to the fact that no other commonly used measures have been integrated
to approach the respective problems, the results are very promising.
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APPENDIX A

Appendix

A.1. Penn Treebank Tags

In the following tables the complete list of the Penn Treebank IT Tag Set [110]

is shown'.
Tag Description Example
CcC conjunction, coordinating and, or, but
CD cardinal number five, three, 13%
DT determiner the, a, these
EX existential there there were six boys
FW foreign word mais
IN conjunction, subordinating or preposition | of, on, before, unless
JJ adjective nice, easy
JJR adjective, comparative nicer, easier
JJS adjective, superlative nicest, easiest
LS list item marker
MD verb, modal auxillary may, should
NN noun, singular or mass tiger, chair, laughter
NNS noun, plural tigers, chairs, insects
NNP noun, proper singular Germany, God, Alice
NNPS | noun, proper plural we met two Christmases ago

'examples taken from http://www.clips.ua.ac.be/pages/mbsp-tags, visited March 2014
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Tag Description Example

PDT predeterminer both his children
POS possessive ending s

PRP pronoun, personal me, you, it

PRP$ | pronoun, possessive my, your, our

RB adverb extremely, loudly, hard
RBR adverb, comparative better

RBS adverb, superlative best

RP adverb, particle about, off, up
SYM symbol %

TO infinitival to what to do?

UH interjection oh, oops, gosh
VB verb, base form think

VBZ verb, 3rd person singular present she thinks

VBP verb, non-3rd person singular present I think

VBD verb, past tense they thought
VBN verb, past participle a sunken ship
VBG verb, gerund or present participle thinking is fun
WDT | wh-determiner which, whatever, whichever
WP wh-pronoun, personal what, who, whom
WP$ wh-pronoun, possessive whose, whosever
WRB | wh-adverb where, when

punctuation mark, sentence closer
punctuation mark, comma
punctuation mark, colon
contextual separator, left paren
contextual separator, right paren

S7F
(
)

Table A.1.: Penn Treebank II Tag Set: Part-of-Speech Tags.

Tag Description ‘Words Example
ADJP | adjective phrase CC+RB+JJ warm and cosy
ADVP | adverb phrase RB also

INTJ interjection UH hello

NP noun phrase DT+RB+JJ+NN + PR | the strange bird
PNP prepositional noun phrase | PP+NP as of today

PP prepositional phrase TO+IN in between
PRT particle RP up the stairs
SBAR | subordinating conjunction | IN whether or not
VP verb phrase RB+MD+VB was looking

Table A.2.: Penn Treebank IT Tag Set: Chunk Tags.
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A.2. Plag-Inn: Examples of 3D Distance Matrix
Visualizations
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pg-gram distance

pg-gram distance
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A.3. Plag-Inn: Sentence Selection

Using a maximum lookahead of maxLookahead = 3, the sentence selection
procedure of the Plag-Inn algorithm creates the final result set of plagiarized
sentences like it is shown in the following figures:
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o o S
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§ i 3 § i 3
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Figure A.1.: Example of the Sentence-Selection Algorithm (Steps 1-6).
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Figure A.2.: Example of the Sentence-Selection Algorithm (Steps 7-12).
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Figure A.3.: Example of the Sentence-Selection Algorithm (Steps 13-18).
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Figure A.4.: Example of the Sentence-Selection Algorithm (Steps 19-24).
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A.3. Plag-Inn: Sentence Selection
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Figure A.5.: Example of the Sentence-Selection Algorithm (Steps 25-30).
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A. Appendix
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Figure A.6.: Example of the Sentence-Selection Algorithm (Steps 31-36).
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Errata

page 15: instead of the stated pg-gram index

(1) = {
*A*BC, *ABCx, *AC**, (root node is *)
ABxxD, AB*DE, ABDEF, ABEF*, ABF*x, (Toot node is A)
AC**G, AC*xG*, AC**G, (root node is A)
BD#** , BE***  BF***, (root node is B)
CGx*H, CGxH*, CG*xH, (root node is C)
GHx (root node is G)
}
the correct index for Z(7,) is
I(Ta) = {
*xA*x*B, *A*BC, *ABC*, *AC*x, (root node is *)
AB*+D, AB+DE, ABDEF, ABEF*, ABF**, (root node is A)
AC**G, AC*Gx, ACG*x, (root node is A)
BD#** , BE*** BF ¥k, (root node is B)
CG**H, CG*H*, CGHxx, (root node is C)
GH*** (root node is G)
}

page 17: Accordingly, instead of the stated pg-gram index

Z(T,) = {*A*BC, *ABC*, *AC**, AB**D, AB*DE, ABDEF, ABEF*, ABF**, ACx*G, AC*G*,
AC**G, BD#** BE*** BF*** CG**H, CGxH*, CG**H, GHx*x* }

Z(Tp) = {*Ax*H, *A*HC, *AHC*, *AC**, AH**B, AH*B*, AHB** AC**G, AC*G*, ACG**,
HB**D, HB*DE, HBDE*, HBE**, CG**F, CG*FH, CGFH*, CGH**, BD***, BE**x }

the correct index is



Z(T,) = {*A**B, *AxBC, *ABC*, *AC**, AB**D, AB*DE, ABDEF, ABEF*, ABF**, AC**G,
AC*G*, ACG**, BD*** BE***, BF#** CGx*H, CG*H*, CGH**, GH*** }

Z(Ty) = {*A*xH, *xA*HC, *AHC*, *AC**, AH**B, AH*B*, AHB**, AC**G, AC*G*, ACG**,
HB**D, HB*DE, HBDE*, HBE**, CG**F, CG*FH, CGFH*, CGHx*, BD*xx, BEksk*, GFkk, GHxokok}

Finally, instead of

|Z(T,)| =18 number of pg-grams in Z(7,)

|Z(T3)| = 20 number of pg-grams in Z(73)
|Z(T,) wZ(Tp)| = 18 + 20 multi-set union of the two indices
|Z(T,) mZ(T})| =5 multi-set intersection of the two indices

(the number of pg-grams occurring in both indices)

distP'(T,, Ty) = |T(To) 8 Z(Ty)| - 2+ |T(Te) @ Z(Tp)| = 18 + 20— 25 = 28

the correct pg-gram distance between the trees T, and Ty is:

|Z(T,)| = 19 number of pg-grams in Z(7,)

|Z(T3)| = 22 number of pq-grams in Z(T3)
|Z(T,) wZ(Tp)| = 19+ 22 multi-set union of the two indices
|Z(T,) mZ(T)| =7 multi-set intersection of the two indices

(the number of pg-grams occurring in both indices)

dist?(T,, Ty) = |T(To) w I(Ty)| - 2+ |Z(T,) @ I(Ty)| = 19+ 22 —=2-7 = 27
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