Computing Isochrones in Multimodal Spatial Networks using
Tile Regions

Nikolaus Krismer
University of Innsbruck
Department of Computer Science
Innsbruck, Austria 6020
nikolaus.krismer@uibk.ac.at

Giinther Specht
University of Innsbruck
Department of Computer Science
Innsbruck, Austria 6020
guenther.specht@uibk.ac.at

ABSTRACT

This paper describes a new method to compute isochrones
in multimodal spatial networks, which aims at finding a
good trade-off between memory usage and runtime. In the
past, approaches based on Dijkstra’s algorithm have been
proposed. For small networks, the entire network is first
loaded in main memory, where the network is expanded to
determine the isochrone. For large networks that do not fit
in main memory, approaches that load the network vertex-
by-vertex during the expansion phase have been proposed.
They keep the memory footprint minimal, but have to query
the database for each node in the isochrone, which can be
very time consuming. The method presented in this paper
uses tiles (which are well known from interactive online maps)
to realize chunk-loading of vertices by utilizing so-called tile
regions. This approach significantly reduces the number of
database requests, while keeping the memory usage low. Our
method is able to compute isochrones even in large networks
at a reasonable time. An experimental evaluation shows that
the new algorithm clearly outperforms previous competitive
approaches such as MINE and MINEX.

CCS CONCEPTS

e Information systems —Geographic information sys-
tems;

This research was funded with the help of the scholarship “Dok-
toratsstipendium aus der Nachwuchsforderung” of the University of
Innsbruck which is held by the first author.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SSDBM ’17, Chicago, IL, USA

© 2017 Copyright held by the owner/author(s). Publication rights
licensed to ACM. 978-1-4503-5282-6/17/06...$15.00

DOI: http://dx.doi.org/10.1145/3085504.3085538

Doris Silbernagl
University of Innsbruck
Department of Computer Science
Innsbruck, Austria 6020
doris.silbernagl@uibk.ac.at

Johann Gamper
Free University of Bozen-Bolzano
Faculty of Computer Science
Bolzano, Ttaly 39100
gamper@inf.unibz.it

KEYWORDS

algorithms, isochrone, spatial database

ACM Reference format:

Nikolaus Krismer, Doris Silbernagl, Giinther Specht, and Johann
Gamper. 2017. Computing Isochrones in Multimodal Spatial
Networks using Tile Regions. In Proceedings of SSDBM ’17,
Chicago, 1L, USA, June 27-29, 2017, 6 pages.

DOI: http://dx.doi.org/10.1145/3085504.3085538

1 INTRODUCTION

Isochrones became more and more popular over the last few
years. They have been integrated into several online services,
such as OpenRouteService [7], Mapnificent [20] or Graph-
hopper [19]. In general, isochrones are a tool to carry out
reachability analyses. They can be used for various purposes,
such as urban planning, public transportation system opti-
mization or to find places to spend some spare time nearby.
The latter application has been implemented using isochrones
for the city of Berlin by naturtrip.org [21].

Isochrones in multimodal networks are computed in a Dijk-
stra like fashion. Starting from the query point, the network
is incrementally expanded in all directions until the maxi-
mum duration is reached. There are essentially two different
strategies: Algorithms either perform the computation in
main memory after loading the entire network, or they load
the network incrementally one vertex at a time during the
computation of the isochrone. The former approach incurs
high memory costs, whereas the latter one requires many disk
accesses and hence has a high query time. The algorithm pro-
posed in this paper adopts an approach in between. Instead
of loading one vertex at a time, it loads a small region of the
network and performs then network expansion in memory.
Whenever the expansion exceeds the regions already loaded
in memory, a new network region is loaded. Although uni-
modal isochrones can be computed this way as well, the rest
of this paper will focus on isochrones in multimodal spatial
networks, which can be classified as continuous or discrete
along, respectively, the space and the time dimension. Con-
tinuous space means that all points on an edge are accessible,

SSDBM '17, June 27-29, 2017, Chicago, IL, USA

whereas in a discrete space network only the vertices can
be accessed. Continuous time networks can be traversed at
any point in time, discrete networks follow an associated
schedule. For instance, the pedestrian network and the street
network are continuous in time and space, whereas the public
transport systems are discrete in both dimensions [8].

Throughout this paper a newly developed approach is pre-
sented that can be used to compute isochrones. It loads data
in chunks from the spatial database holding the geograph-
ical information. The chunks used can be represented by
so called tiles which are already known in context of online
maps within the community of geoinformatics.

The rest of this paper is organized as follows: Section 2 dis-
cusses related work. Section 3 describes the newly developed
approach. Section 4 presents the results of an empirical eval-
uation. Section 5 concludes the paper and outlines possible
further research directions.

2 RELATED WORK

Isochrones in multimodal spatial networks have been defined
by Gamper et al. in [8]. Algorithms used for isochrone com-
putation, such as Dijkstra’s algorithm [6], work well as long
as the networks are small, but suffer when the network is
large. An implementation of the Dijkstra algorithm that is
able to work in a multimodal environment is presented by
Bauer et al. in [3]. However, especially multimodal spatial
networks tend to be large enough so that computation time
can be reduced by taking care of the amount of data loaded.
The approach described in [3] simply loads the whole net-
work in main memory, making it unusable for large networks
that do not fit in memory. An approach called Multimodal
Incremental Network Expansion (MINE) was developed by
Gamper et al. in [8] that loads data only when it is needed.
The algorithm is still limited in terms of memory consump-
tion when large isochrones are computed, but it is usable with
networks of any size. It was later optimized to free memory
as soon as possible, resulting in an approach called vertex
expiration that was first implemented in an algorithm called
Multimodal Incremental Network Expansion using vertex
eXpiration (MINEX) [9].

Vertex expiration allows the computation of large
isochrones since only a portion of the result is kept in memory
that is needed for the correct functioning of the algorithm.
According to the authors the runtime of MINE is superior to
the runtime of the multimodal Dijkstra algorithm presented
by Bauer et al. in [3] (called MDijkstra from now on) when
computing small isochrones, but becomes slower for large
isochrones. This also holds true for MINEX, although vertex
expiration further decreases computation time. In general,
there is a break-even point for each network that determines
how long MINEX is faster than MDijkstra [9].

Approaches regarding isochrones and network partition-
ing have been presented by Baum et al. in [4]. However,
algorithms using partitioning have not yet been applied to
multimodal spatial networks.

N. Krismer et al.

The data forming a multimodal spatial network can be
extracted from various online sources. A possible workflow for
creating a multimodal spatial dataset suitable for isochrone
calculation has been published in [12]. It uses two different
sources: one to gather information about the continuous
pedestrian network and one to acquire information about the
discrete public transportation system.

The source from which the geospatial data is acquired
is OpenStreetMap [18] (OSM). Quality analyses have been
a topic of research since the beginnings of the project [11].
Depending on the geographic region it varies [10, 15], but
in contrast to other datasets it is of near global coverage,
up-to-date, accessible for everyone without paying fees. The
quality of the road network, which is of great importance
when computing isochrones, has been examined by various
researchers and was summarized by Neis et al. in [16] and
more recently by Brovelli et al. in [5]. Especially in urban
areas data is of good quality, whereas it can be poor in
rural areas. The datasets used for evaluation will therefore
represent cities. They are chosen to be of different size to
show the behavior of the algorithms regarding network size.

The information about the public transportation systems
is provided from the operators themselves. It is available in
a format called General Transit Feed Specification (GTFS),
which was presented by Google in 2006. It nowadays is the
de facto standard for representing scheduled transit data and
used by many different types of applications [1]. Other com-
mon formats in the context of such data, like the data model
of the “Verband Deutscher Verkehrsunternehmen (VDV)” in
some countries around Europe, can also be used if they are
converted to GTFS first. All these information is either di-
rectly supplied at the operators web site or can be downloaded
from various data exchange portals, like transit.land [13] or
transitfeeds [2].

3 MULTIMODAL INCREMENTAL
NETWORK EXPANSION USING
TILE REGIONS

As described in Section 2, MINE and MINEX only load net-
work parts that are really needed during expansion. There-
fore, the two algorithms are optimal in terms of memory
usage, but they are not scalable for large networks in terms
of runtime for several reasons.

First, and most importantly, the number of database ac-
cesses is very large. Each expansion step loads the edges
connected with the expanded vertex, typically resulting in
one database query per step. Secondly, since vertices with
the shortest distance to the query point are loaded first, space
locality on disk is not guaranteed. Lastly, the full capacity of
a disk block is not utilized in most cases. The edges will most
likely not fill up the entire transferred block, and caching
might not be very effective due to the lack of spatial locality
during expansion. As a result both algorithms have a large
I/O cost.

To decrease computation time, we suggest to load the
data from the underlying spatial database in chunks into

Computing Isochrones in Multimodal Spatial Networks using Tile Regions

the main memory. This will reduce the number of accesses
to the data source and fills up transferred blocks better.
Furthermore, if a clustered index is created for the network
within the database and if the chunks are chosen wisely,
I/O costs can be reduced since spatial locality on disk is
regarded. We propose to use tiles to determine the chunks
loaded from the database. They are well-known in the context
of geoinformatics and are utilized by the widely used Web
Map Tile Service (WMTS) Implementation Standard that has
been defined by the Open Geospatial Consortium (OGC) [14].
Since the well-known term “tile” only refers to a “rectangular
pictorial representation of geographic data”, meaning the
visualization of the data, but not the data itself, it is necessary
to distinguish between tiles and tile regions. Hence, the term
“tile region” is used throughout this paper, which also refers
to the geographic data that lies inside a tile.

Definition 3.1 (Tile region). A tile region is of quadratic
shape and covers a part of the multimodal spatial network.
The size of a tile region is determined by a zoom level z.

To allow performance tuning, different tile region sizes
can be implemented. This concept is also used in interactive
online maps. Zoom level z=0 refers to the maximal extent of
the network (for geographic data this usually equals the whole
world), while an increment to the level is equal to dividing
each tile region of the previous level into four new ones. This
is equal to a quad-tree partitioning of the network and means
that zoom level z=12 already produces 4'? = 16.777.216
different tile regions. The collection of all tile regions of a
specific z form a matrix that is defined as tile region matrix.

Definition 3.2 (Tile region matriz). A tile region matrix
is the set of all tile regions for a fixed scale defined by zoom
level z. The number of tile regions in a tile region matrix is
determined by the following formula: 4°

Every vertex is mapped to exactly one tile region within a
tile region matrix. Therefore, loading the edges for the next
expansion step is straight forward.

The first step is to determine to which tile region the vertex
triggering the loading process belongs to. This is done by
utilizing the PostgreSQL database functions “lon2tile” and
“lat2tile” defined by the OSM community [17]. Secondly, the
extent of the tile is determined by using the database func-
tions “tile2lon” and “tile2lat” (again from OSM). The results
are passed to the PostGIS function “ST_MakeEnvelope” in
order to create an envelope used for vertex loading. The
next step is to determine all vertices intersecting with this
envelope by using the PostGIS operator “&&”. Finally, all
the edges connected to at least one of the vertices identified
in the previous step are loaded.

Since tile regions are used, the proposed algorithm is called
“Multimodal Incremental Network Expansion using Tile re-
gions” (MINET). This naming schema coincides with the one
of the algorithms MINE and MINEX from the papers [8] and
[9]. The presented approach also allows vertex expiration, as
it has been defined in [9], in order to free memory as early
as possible. When using vertex expiration the algorithm is

SSDBM '17, June 27-29, 2017, Chicago, IL, USA

named “Multimodal Incremental Network Expansion using
Tile regions and vertex eXpiration” (MINETX), which loads
data in tiles and expires single vertices.

By using a tile region matrix with incremented z, the
loaded chunks become smaller and the amount of data loaded
within one request decreases. Therefore, a trade-off has to
be made between the number of database requests and the
amount of vertices held in main memory. The advantage of
this strategy is that the algorithm can be easily tailored to
the available hardware. If the database connection comes
with high latency and if there is enough main memory, z can
be chosen to be small (loading more data with one request).
If main memory is small, z can be increased in order to
load smaller tile regions. This approach also diminishes the
problem that the amount of vertices held by one tile region
varies within a tile region matrix.

Algorithm 1 lists MINETX in pseudo-code. Just like
MINEX does, it implements an incremental network expan-
sions strategy.

Algorithm 1: Algorithm MINETX(q, dmas, S, t, 2, N)

input :q,dmax, S, t, 2, N
output :E"® V"¢
1 C + 0
2 O« {(v,0,cnty)};
3 while O # 0 A (v, dy, cnty) « dequeue(O) A dy < dpaz do
4 O+ O\ {v};
5 C «+ CuU{v};
6 if indegree(v) = 0 then
// v has not been loaded...
// ...load all edges within the tile region defined by v and z
7 T < loadTileRegion(v, z) ;
8 foreach (u’,v’) € T do
9 if u/ ¢ OUC then
10 LEMM “— u{(u',oo,cntu/)};
11 if v/ ¢ OUC then
12 LEMM — U{(v’,oo,cntv/)};
// continue expansion just like MINEX would
13 foreach e = (u,v) € E do
14 if u ¢ OUC then
15 | O« O U{(u,00,cnty)};
16 if u ¢ C then
17 d&er(e,tfdy)+dv;
18 dy < min(dy, d;);
19 if (6(e)) € {“csct”, “csdt”} then
20 Ld:ikr(e,tfdv)+dv;
21 cnty <— cnty — 1
22 if u € C A enty, = 0 then
// expire vertex
23 C+ C\{u};
24 if p(0(e)) € {“csct”, “csdt”} then
25 if d;.g dmag then
26 | E™® « E"* U {(e,0,X(e))}
27 else
28 L E™® « E™ U {(e, 0, A(€))}, where d((e,0), 4, 1) = dmaz
29 if c¢nt, = 0 then
30 L C+ C\{v}
381 | V"« VT U {(v,dy)};

For Algorithm 1 it is assumed that the query point ¢
coincides with a network vertex. If this is not true then ¢
can easily projected to the nearest vertex within the network.
The maximum travel duration within the resulting isochrone
is determined by dymqz, whereas the travel speed is defined
by s. The arrival date and time at g is set by ¢. The zoom

SSDBM '17, June 27-29, 2017, Chicago, IL, USA

level z needs to be passed as an input to the algorithm as
well as the network N itself.

Just like MINEX does, the algorithm maintains two sets of
vertices: closed vertices (C') that have already been expanded
and open vertices (O) that have been encountered but are
not yet expanded. For each vertex v € O U C, the network
distance to ¢, d(v,q,t), and a counter, cnt,, which keeps
track of the number of outgoing edges that have not yet been
traversed, is recorded. For an edge e = (u,v), the function
7(e,t) computes the time-dependent transfer time required
to traverse e. C starts as an empty set. O is initialized to v
with dn (v, ¢, 0) and the number of connected edges.

During the expansion phase, vertex v with the smallest
network distance is dequeued from O and added to C. If the
tile region to which v belongs has not already been loaded,
this is done now. As a result all edges that intersect with the
tile region get loaded into main memory. All incoming edges,
e = (u,v), are retrieved from this memory and considered in
turn. If vertex w is visited for the first time, it is added to O
with a distance of oo and the number of outgoing edges, cnt.,.
Then, the distance d,, of u when traversing e is computed
and the distance d, is updated. If e is continuous (“csct”
or “csdt”), the reachable part of e is added to the result.
Edges of discrete type (“dsct” or “dsdt”) produce no direct
output, since only the vertices are accessible, and they are
added when their “csct” edges are processed. Finally, cnt,, is
decremented by 1; if u is closed and ent,, = 0, u is expired and
removed from C. Once all incoming edges of v are processed,
the expiration and removal of v is checked. The algorithm
terminates when O is empty or the network distance of the
closest vertex in O exceeds dmaz.-

4 EVALUATION

In this section the results of an empirical evaluation of the
proposed algorithm are described. The determination of the
zoom level used by MINET and MINETX as well as the

analyses of runtime and memory consumption are given.

4.1 Datasets

For the evaluation three different real-world datasets are used
that vary in size, network-topology and the number of trans-
portation vertices. They all were created using osmPti2mmds
that is described in detail in [12].

Table 1 summarizes the datasets. The column “Size” de-
notes the network size, as it is stored in the database (in
Mebibyte), whereas the other columns list the number of
tuples stored. |V| represents the total number of vertices, |F|
the total number of edges, |E¢sc/| the number of continuous
(pedestrian) edges, |Eysq| of discrete (transportation) edges
and |S| the number of schedules. The average degree of the
three networks is between 2.6 for BZ and 3.0 for WDC.

Dataset Size | V]]| 1Bcoer] | Basar] 151
BER 571.8 MiB | 201.3 k | 557.99 k | 538.19 k | 13.81 k | 2521.3 k
BZ 15.22 MiB 6.34 k 16.99 k 15.69 k 0.72 k 49.35 k
WDC 129.35 MiB | 37.39 k | 114.59 k 99.02 k 7.68 k | 728.32 k

Table 1: Statistics about the datasets

N. Krismer et al.

The dataset BER corresponds to Berlin, the capitol of
Germany. The data of the continuous network was retrieved
in January 2017 from OSM and was enhanced with infor-
mation about the public transportation system. The data
is available from the “Verkehrsverbund Berlin-Brandenburg
GmbH” (VBB). It is the biggest dataset in size and contains
many different transportation modalities. Besides buses it
also includes trams, trains and subways. The query point for
this dataset is set to the “Brandenburg Gate” with an arrival
time of 09.00 a.m. on a working day.

The dataset BZ represents the small city Bolzano in the
north of Italy. Besides the pedestrian network that has been
retrieved from OSM in January 2017 it also contains the pub-
lic transportation system of the local transportation company
“SASA (Societa Autobus Servizi d’Area)”, which is available
as Open Data. It is given in a VDV452 format that was con-
verted to GTFS regarding the official conversion instructions
from SASA. The query point for the isochrone computation
is a central square, namely the “Dominikanerplatz”, with an
arrival time of 09.00 a.m on a working day.

The dataset WDC describes the U.S. capitol Washing-
ton, D.C.. The pedestrian network again was retrieved in
January 2017 from OSM. It was enriched by the schedules
from the “Washington Metropolitan Area Transit Authority
(WMATA)” which has been fetched from their developer
portal. As query point the “Zero Milestone South of the
White House” is used with an arrival time of 09.00 a.m. on a
working day. In contrast to the dataset of Berlin this dataset
reflects a grid based street network, while the other datasets
do not (BER and BZ look more like a spider network).

4.2 System Description

For creating the empirical results a system was used that is
equipped with two Intel Xeon E5-2650 v2 processors running
at 2.6 GHz (with a maximal turbo frequency of 3.2 GHz) and
a total of 16 cores (8 cores per CPU). The main memory is
DDR3-ECC RAM and 188 GB in size. The database used is
PostgreSQL 9.5.5 with the PostGIS 2.2.4 extension enabled,
while the operating system is CentOS 7.2.1511.

The tests listed in the following subsections were carried
out 25 times. The plots represent the median of the results.

4.3 Determining the Zoom Level

The first examination during this evaluation is to determine
the best zoom level for the fixed networks that later is used
for runtime and memory evaluation. The runtimes of the
zoom levels from 13 to 19 is plotted in Figure 1 to determine
the optimal value of z. The memory consumption is not
listed, since it is obvious that with growing zoom level it
decreases while the number of database queries increases.
It can be seen that a large duration d,,q.. implies the usage
of smaller values for z. When aggregating all the runtimes
over dmaz, up to one hour the zoom levels z=14 and z=15
are the smallest in all three cases. In general, starting from
a value of 16 they get slower as z increases. Decreasing the
zoom level below 14 also increases runtime. The effect of

Computing Isochrones in Multimodal Spatial Networks using Tile Regions

T T T — T T ——F
@ MineT13 A 150 @ MineT13 —t ,
60[-m MineT14 Fa B MineT14 4
—a MineT15 4 MineT15
= ——MineT16 Va = —— MineT16 &
© | - MineT17 / | o 1 & MineT17/
2 40 - MineT1s £ MineT4s
£ —+MineT19 purs = —+ MineT'19
3 El o
= = L oot
r 4 0.5 / P i
20 ol
) = i—‘—h—ll
15 30 45 60 15 30 45 60
dypaz[min] dypaz[min)
(a) BER (b) BZ
j 7
@ MineT13 Vg
10[= MineT14 / 1
—&- MineT15
= S[—MineT16 # 1
° ~&- MineT17 /
2 6 MineT18 / 1
k=) —+MineT19
5 4t o« ?
2 T
R= - L L
15 30 45 60

dipaz[min]

(c) WDC
Figure 1: Determination of the zoom level z.

decreasing z is less dramatic, so it can not be easily seen from
Figure 1. However, when looking at the raw numbers, the
fastest zoom levels (after aggregation over dmaz) are either
14 or 15, depending on the aggregation method (average or
median) for all the datasets. Since a zoom level of z=15
saves a bit of memory and is comparably fast, z is set to 15
for the following evaluations.

4.4 Runtime

The results shown in Figure 2 are split into two parts. The
left side of each subfigure shows the calculation with a limit
of a specific isochrone duration dmaes (given in minutes). The
right side illustrates the calculation time needed to compute
an isochrone of size |[V**°| (given in number of vertices).

The first thing that can be noticed in the runtime results
is that vertex expiration does not have a big influence on
the evaluation system used. There is plenty of main memory
available, so the runtimes for algorithms with and without
vertex expiration are nearly the same (the difference of their
runtimes is below one percent of time). This has been double-
checked manually in the single test results and is true for all
the runtimes. Therefore, only the results of the algorithms
using vertex expiration are listed in Figure 2.

For the BER dataset, the runtime of the proposed algo-
rithms is always less than the one for MINE and MINEX
when using the isochrone’s duration as limiting factor. It
also stays below the runtime for MDijkstra until isochrones
get bigger than about 30 minutes. An additional observation
is that MINET and MINETX stay close to the runtime of
MDijkstra even for larger isochrones. The same holds true
for the WDC dataset, although the overall runtimes are less
for this smaller dataset. For the smallest dataset of BZ the
observation is still valid, with the exception that the algo-
rithm MDijkstra becomes faster than the other algorithms
very early (at an isochrone duration of about five minutes).

SSDBM '17, June 27-29, 2017, Chicago, IL, USA

50[-m MDijkstra ./'/’ g MDijkstra
@ MINEX / L8 MINEX /
_40f - MINETX o 1 __ 15[W MINETX (ﬁ 1
= / = \
g 30 /0/ 1 g qf [L
= { £
2 20 Vave: e
L Vs] 0.5 ,/ 1
10 . - s
yr— o SUNSSSCT
15 30 45 60 5 10
oz [min) |[Viso| % 1k
(a) BER
1.2[- MDijkstra ° P = & MDijkstra /’
7| -&-MINEX -e-MINEX / R
1F +MINETX// 1 ~A-MINETX
Tos 12%
;:; 0.6 ’// 4 g 0.6 ‘
S04/ 1 Fo4 #]
1 A A A A A AA 1
0.2 gaiaammmEw 0.2 / e A A
: il ‘ ‘ e I
g 15 30 45 60 5 10
gz [min) [Viso| % 1k
(b) BZ
= MDijkstra ‘ f’ B _m MDifkstra o
8| -~ MINEX Vs ~&- MINEX o
—4- MINETX o 1.5 ~+-MINETX 1
= / = d
< O 1 g o
g, Vat E 1 . - |
g P |
Zr /;//.AA//‘ ’ 0‘5|w)' R -
B :"u‘ . A—ftﬁ"’*i‘ﬁjiti i
’ 15 30 45 60 5 10
g [min] [Viso] % 1k
(c) WDC

Figure 2: Comparison of calculation times.

When looking at the runtimes for limited isochrone size
on the right side in the figure, the results are a bit different.
The runtime of MDijkstra heavily depends on the dataset
used. This is not true for neither MINE or MINEX, nor
for MINET or MINETX. All these algorithms seem to grow
linear with the size of the computed isochrone. However,
the multiplication factor of the runtime of MINET (and
MINETX) seems to be way better than the one of MINE
(and MINEX).

4.5 Memory Consumption

For the memory consumption it is again distinguished be-
tween evaluations that are bound by the maximal duration
time of the isochrone (left side of Figure 3) and the maximal
isochrone size (right side of Figure 3).

Figure 3 reveals some differences between the algorithms.
It can be noticed that MDijkstra loads the whole network
for all computations and therefore always needs the most
memory. MINEX in difference is optimal in terms of mem-
ory consumption [9]. This results in the smallest memory
footprint. MINETX does not perform as well as MINEX,
but still significantly better than MDijkstra. It can be seen
that data is loaded in chunks, since the memory consumption
increases erratically at specific time points and stays constant

SSDBM '17, June 27-29, 2017, Chicago, IL, USA

" EEEEEEEEEE EEEER
2001 g Nbijstra 2007 & MbDijkstra
MINE MINE
= | @ MINEX] = | @ MINEX]
< 1500 " viver = 130 viner
. —4-MINETX . —4- MINETX
5 L A]
Z 100 s 100
= =
:)O . ‘/k‘,,A—A—A—A—i— 50 . h
x”
RS ? oss—b—b—b—p—5—5—5—1
15 30 45 60 0 10
gz [min) [Viso| % 1k
(a) BER
EEEEEEEEERRA EEE B B EENE B EE
[-® MDijkstra O] _m MDijkstra 1
MINE MINE
-8 MINEX - @ MINEX
=y oowmer | o=yl vmEr |
* —4- MINETX . —4- MINETX
5 &
S 5
= 9 /A—A * = 9l i
e ad . . g (see—0-9 9o 0 0 o0 o
15 30 45 60 5 10
e [miin] [Viso] x 1k
(b) BZ
EEEEEEEEERRA 1
B MDijkstra B MDijkstra
| MINE 1 i MINE 1
30| -e-MINEX 30[-~ MINEX
= MINET = MINET
. —4- MINETX . —4- MINETX
= 20 1 5 20
= =
S e e W
10f S el 1 10
A N e] t
& e 600 0% >
15 30 45 60] 10
g [min] [Viso| s 1k
(c) WDC

Figure 3: Memory consumption comparison.

over a specific time (until the next chunk needs to be loaded).
This can best be observed in the dataset BZ where chunks
that are relatively large when compared to the network size
are loaded early.

Vertex expiration works well with both the MINEX and
the MINETX algorithm. In contrast to the calculation times
listed in Section 4.4 it has a big influence on the memory
consumption. When compared to MINE and MINET, the ex-
piration aware algorithms need less memory. This effect gets
more and more important as the duration of the computed
isochrone increases.

5 CONCLUSIONS

In this paper a new approach able to compute isochrones in
multimodal spatial networks was presented. It loads data
from the underlying data source using chunks, namely so
called tile regions. This helps to reduce the number of calls to
the database and also to minimize I/O costs. These regions
also benefit from data locality, which also helps to better fill
disk blocks during data transfer.

The empirical evaluation described in Section 4 shows that
the proposed algorithm MINETX is always faster than the
one presented by Gamper et al. in [9], but needs more main
memory. In contrast to the algorithm MDijkstra developed

N. Krismer et al.

by Bauer et al. in [3] it does not load the whole network into
memory, nor keeps the computed isochrone in memory. Thus,
its application areas are not limited by network size, neither
by result size.

Further research regarding the presented method can be
seen in varying the chunks loaded. The results when using
tile regions look promising, but the quadratic nature of them
is not optimal with respect to reachability. When loading a
vertex at the very border of such a tile region, it is most likely
the case that not all loaded vertices will later be expanded
by the algorithm. Therefore, looking at circular ranges for
loading chunks could be of interest for further investigations.

REFERENCES

[1] Aaron Antrim and Sean J Barbeau. 2013. The Many Uses of
GTFS data. Location-Aware Information Systems Laboratory
(2013).

[2] Crunchy Bagel. 2017. TransitFeeds. https://transitfeeds.com/.
(2017).

[3] Veronika Bauer, Johann Gamper, Roberto Loperfido, Sylvia

Profanter, Stefan Putzer, and Igor Timko. 2008. Computing

Isochrones in Multi-Modal, Schedule-Based Transport Networks.

In Proc. of the 16th SIGSPATIAL conference. ACM, 78:1-78:2.

Moritz Baum, Valentin Buchhold, Julian Dibbelt, and Dorothea

Wagner. 2016. Fast Exact Computation of Isochrones in Road

Networks. In Proc. of 15th SEA. Springer, 17-32.

[5] Maria Antonia Brovelli, Marco Minghini, Monia Molinari, and
Peter Mooney. 2016. Towards an Automated Comparison of
OpenStreetMap with Authoritative Road Datasets. Transactions
in GIS (2016).

[6] Edsger W Dijkstra. 1959. A Note on Two Problems in Connexion

with Graphs. Numer. Math. (1959), 269-271.

Heidelberg Institute for Geoinformation Technology (HeiGIT).

2017. OpenRouteService. http://openrouteservice.org/. (2017).

[8] Johann Gamper, Michael Bohlen, Willi Cometti, and Markus

Innerebner. 2011. Defining Isochrones in Multimodal Spatial

Networks. In Proc. of the 20th CIKM conference. ACM, 2381—

2384.

Johann Gamper, Michael Béhlen, and Markus Innerebner. 2012.

Scalable Computation of Isochrones with Network Expiration. In

Proc. of 24th SSDBM conference. ACM, Springer, 526-543.

[10] Jean-Francgois Girres and Guillaume Touya. 2010. Quality Assess-
ment of the French OpenStreetMap Dataset. Transactions in
GIS (2010), 435-459.

[11] Ourania Kounadi. 2009. Assessing the Quality of OpenStreetMap
Data. Master’s thesis. University College of London.

[12] Nikolaus Krismer, Doris Silbernagl, Johann Gamper, and Giinther
Specht. 2016. osmPti2mmds—Erstellung von multimodalen
Datensets aus OpenStreetMap und OPNV-Informationen. AGIT
(2016).

[13] Mapzen. 2017. Transitland. https://transit.land/. (2017).

[14] Joan Masé, Keith Pomakis, and Nuria Julia. 2010. Web Map
Tile Service Implementation Standard. Technical Report. Open
Geospatial Consortium.

[15] Peter Mooney, Padraig Corcoran, and Adam C Winstanley. 2010.
Towards Quality Metrics for OpenStreetMap. In Proc. of the
18th SIGSPATIAL conference. ACM, 514-517.

[16] Pascal Neis and Dennis Zielstra. 2014. Recent Developments and
Future Trends in Volunteered Geographic Information Research:
The Case of OpenStreetMap. Future Internet (2014), 76-106.

[17] OpenStreetMap contributors. 2017. Slippy map tilenames. https:
//wiki.openstreetmap.org/wiki/Slippy-map-tilenames. (2017).

[18] OpenStreetMap Foundation. 2017. OpenStreetMap. https://
www.openstreetmap.org/. (2017).

[19] Stefan Schroder, Peter Karich, and Michael Zilske. 2017. Graph-
hopper. https://graphhopper.com/. (2017).

[20] Stefan Wehrmeyer. 2017. Mapnificent. http://www.mapnificent.
net/. (2017).

[21] Hermann Weifl and Judith Kammerer. 2017. NaturTrip. https:
//naturtrip.org/. (2017).

4

[7

[9

https://transitfeeds.com/
http://openrouteservice.org/
https://transit.land/
https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://graphhopper.com/
http://www.mapnificent.net/
http://www.mapnificent.net/
https://naturtrip.org/
https://naturtrip.org/

	Abstract
	1 Introduction
	2 Related Work
	3 Multimodal Incremental Network Expansion using Tile Regions
	4 Evaluation
	4.1 Datasets
	4.2 System Description
	4.3 Determining the Zoom Level
	4.4 Runtime
	4.5 Memory Consumption

	5 Conclusions
	References

