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Abstract—In recent years, music aficionados have increasingly
been consuming music via public music streaming platforms.
Due to the size of the collections provided, music recommender
systems have become a vital component as these aim to provide
recommendations that match the user’s current context as,
throughout the day, users listen to music in numerous different
contexts and situations. In this paper, we propose a multi-context-
aware track recommender system that jointly exploits information
about the current situation and musical preferences of users. To
jointly model users by their situational and musical preferences,
we cluster users based on their situational features and similarly,
cluster music tracks based on their content features. Our exper-
iments show that by relying on Factorization Machines for the
computation of recommendations, the proposed approach allows
to successfully leverage interaction effects between listening
histories, situational and track content information, substantially
outperforming a set of baseline recommenders.

Index Terms—Music Recommender Systems, Context-aware
Recommender Systems

I. INTRODUCTION

Over the last decade, people have increasingly switched
from listening to their private music collections to using
music streaming platforms providing millions of tracks [1].
To increase usability, streaming platforms heavily rely on
recommender systems (RecSys) to help users navigate through
the provided collections to discover music they like. However,
whether or not a user likes a recommended track heavily
depends on the user’s current context. Previous research has
shown that information about the context of a user (e.g., time,
location, occasion or emotional state) is essential for provid-
ing suitable personalized music recommendations [2], [3] as
people listen to different music during different activities [4]
and create playlists that are intended for certain activities [5].

Recently, music streaming platforms started to provide user
playlists publicly which allows to quantitatively study listen-
ing and organizational habits. On Spotify', all user-created
playlists are public by default and thus, can be crawled.
To this end, Pichl et al. [6], [7] proposed an approach for
clustering contextually similar playlists by extracting con-
textual information from the names of playlists, ultimately
allowing for finding playlists that users created for similar
purposes and situations. The authors propose to leverage these
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clusters as an additional feature for a factorization machine-
based RecSys. Furthermore, they perform an analysis of the
acoustic features (e.g., tempo or danceability) of the tracks
contained in individual playlists [8] and find that there are
five different groups (archetypes) of playlists, described by
their audio characteristics.

However, thus far, information about the situational context
of a user has not been linked with acoustic feature-based
playlist archetypes. In this work, we are particularly interested
in how contextual and audio characteristics may jointly be
leveraged for track recommendations. Therefore, we propose
to make use of factorization machines (FM) [9] as these
allow for exploiting latent features and interactions between
input variables and hence, are a suitable choice for this
task. This makes FMs well suited for the task of multi-
context-aware RecSys as we aim at exploiting interaction
effects between contextual clusters extracted from the names
of playlists and acoustic feature-based clusters based on audio
characteristics. In this paper, we present a novel FM-based
user model combining situational context with acoustic context
and refer to this model as multi-context user model. In several
experiments, we show that a RecSys leveraging this proposed
model substantially outperforms context-agnostic baselines
and, more importantly, a context-aware RecSys that relies on
either context- or acoustic feature-based clusters individually.

The main contribution of this work is twofold: firstly, we
leverage two types of contextual information for the com-
putation of multi-context-aware track recommendations that
allow capturing a user’s preference towards certain archetypes
of music (acoustic context) as well as the contexts in which
users listen to certain tracks (situational context). Secondly, by
utilizing factorization machines, we exploit interaction effects
between the input variables (user listening history, acoustic
feature-based playlist archetypes and situational context).

II. RELATED WORK

For the computation of recommendations, user-based col-
laborative filtering has been shown to work well in the field
of music recommender systems [6], [10], [11]. User-based CF
relies on a user-item matrix as input. This matrix, containing
ratings of users for items, is exploited to group users based on
their rating behavior and hence, to find similar users. Based
on nearest neighbors, items for a given user are recommended



by choosing the items these neighbors rated favorably and
that are new to the user. CF-based approaches utilizing matrix
factorization (MF) techniques have been shown to yield better
recommendation accuracies (e.g., [12]). Those approaches are
also known as latent factor models, as factorizing the user-
item matrix yields a latent representation of user-item ratings
on a more abstract level (e.g., by applying Singular Value
Decomposition (SVD) [12]). Several extensions to MF have
been introduced (e.g., for implicit feedback data [13], [14] or
for context-aware recommendations [15], [16]).

Generally, context can be considered as any additional
information improving recommendation accuracy and it is
widely agreed upon the fact that the user’s context improves
personalized recommendations [17]. In the field of music
recommender systems, studies showed that users often seek
for music that matches their current context (i.e., occasion,
event or emotional states) [2], [3]. As for the different types of
contexts, Kaminskas and Ricci [18] distinguish environment-
related context (location, time, weather), user-related context
(activity, demographic information, emotional state of the user)
and multimedia context (text or pictures the user is currently
reading or looking at). Examples for contextual information
that is leveraged for music recommendations are emotion and
mood (e.g., [19], [20]) or the user’s location (e.g., [21], [22]).

A recent enhancement of CF are factorization machines
(FM) [9]. FMs combine the advantages of support vector ma-
chines (SVM) with factorization models. Factorization enables
the FM to model all interactions between variables in linear
time [9], where the model variables can be metric, nominal or
ordinal. Hence, different types of context can be integrated as
nominal variables, (e.g., weekdays or user groups).

In this work, we present a multi-context matrix factorization
approach. We utilize SVD to represent the user context in a
latent feature space and FMs to exploit interaction effects of
different types of user context in a rating prediction and top-n
recommendation scenario. To the best of our knowledge, this is
the first music recommender system leveraging pre-computed
nominal contextual variables in a FM-based RecSys.

III. PROBLEM FORMULATION

In the following, we formally define the problem tackled in
this paper, namely the context-aware track recommendation
problem. The basic input for such a RecSys is a user-item
matrix R, which holds prior ratings for items by users. It
consists of m rows (corresponding to the number of users)
and n columns (corresponding to the number of tracks).
The elements r; ; of the matrix correspond to the rating a
user ¢ has assigned to track j. Based on this matrix, the
track recommendation problem can be formulated as a rating
prediction task as stated in Equation 1. The utility function fgr
assigns predicted ratings 7; ; to unrated <user,track>-pairs.
In classical CF-models, fr is learned from prior user-track
interactions.

fr =User x Track — Rating (D

fr can be learned by matrix factorization techniques as
SVD [23] as depicted in Equation 2, where U € R™*" and
V € R™™™ are orthogonal factor matrices that embed users
and tracks onto a lower dimensional space of latent features.
Y is a m x n diagonal matrix of singular values, estimating
the impacts of the latent features on a rating 7.

R=UxvVT )

Using this representation, a single rating © can be estimated
using the dot product of the feature vector of the user u; and
the feature vector of the item vj: 7, ; = w; - ¥5.

Prior research has found that people listen to different music
during different activities [4] and people create playlists that
are intended for certain activities [5]. Hence, depending on dif-
ferent user contexts, different tracks need to be recommended.
This problem can be formulated as depicted in Equation 3,
where fcg is a utiliy function assigning predicted ratings 7; ;
to user u for track ¢ given user contexts c [17].

for = User x Track x Contexts — Rating 3)

Hence, the problem we study is the computation of track
recommendations that match the current context of a user
given his/her listening history including the contexts in which
those tracks have been listed to.

IV. DATASET

Throughout our experiments, we leverage a publicly avail-
able dataset containing Spotify playlists [8]. In a first step, we
apply the proposed dimension reduction and clustering meth-
ods on the initial dataset to obtain the proposed acoustic fea-
ture and situational clusters. This results in a dataset containing
<user,track,SC,AC,rating,acoustic features>-tuples. We also
add the seven individual acoustic features for each track (AF)
provided by the Spotify API?, as we also aim to use these as a
baseline approach in the course of our experiments. In a next
step, we assign each track a rating value r as described in
Section V. The rating indicates whether a certain user listened
to a certain track in a certain situational cluster (r = 1) or
not (r = 0). Please note that a user might listen to the same
song in different situations, whereas a track always belongs
to the same acoustic feature-based cluster. The final dataset
used for the presented evaluation contains 956 unique users
who listened to 485,304 unique tracks (we removed tracks we
could not obtain acoustic features for and playlists for which
we could not extract situational information in the playlist
name for). On average, a user in the dataset listens to 770.19
tracks (SD=2,168.62, Median=264.50).

V. PROPOSED MULTI-CONTEXT RECSYS

The main idea of our approach is to compute recommenda-
tions based on the listening histories of users and contextual
information regarding audio content and situational features.
Particularly, we model and exploit pairwise interaction effects

Zhttps://developer.spotify.com/web- api/get- several-audio-features
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Fig. 1. Workflow for Computing Recommendations

between different contexts, between users and contexts and
between tracks and contexts.

As input for the proposed approach, we require a dataset of
playlists (i.e., sets of tracks) assembled by users as presented
in Section IV. We assume that by adding a track to a playlist,
the user expresses some preference for the track. For means
of simplicity, we refer to such a user-track interaction as “a
given user listened to a given track”. Each playlist is tagged
with a user-defined name that describes the content of the
playlist. Based on such a dataset, we propose to compute two
types of contextual information for the computation of context-
aware track recommendations: (i) playlist archetypes and (ii)
situational clusters, which we describe in the following.

The additional context information allows to model user
preferences for tracks contained in certain playlist archetypes
in a given situation. We refer to the clusters mined from
acoustic features as acoustic feature clusters (AC) and to the
clusters mined from playlist names as situational clusters (SC).
To finally incorporate this information into a context-aware
RecSys tackling the problem as stated in Section III, we pro-
pose a model based on factorization machines (FM) [9]. This
allows capturing user preference towards a certain archetype
of music in a certain situational context and to exploit the
interaction effects between these two notions of context. An
overview of the proposed approach is given in Figure 1,
where the steps taken to extract contextual information that
is leveraged in the recommendation computation are outlined.

A. Playlist Archetypes

The proposed approach relies on clusters of playlists
(archetypes) that share similar acoustic features (e.g., the
tempo of the tracks contained). In a first step, we process
and aggregate seven standard acoustic features obtained via the
Spotify API® as proposed by previous research [8], [24]. These
content features are extracted and aggregated from the audio
signal of a track and comprise: danceability (how suitable a
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track is for dancing), energy (perceived intensity and activity),
speechiness (presence of spoken words in a track), acoustic-
ness (confidence whether track is acoustic), instrumentalness
(prediction whether track contains no vocals), tempo (in beats
per minute) and valence (musical positiveness conveyed).
Next, we aggregate the acoustic features of each track per
playlist using the arithmetic mean and remove the outliers as
proposed by Pichl et al. [8]. The result of this aggregation
step is a lower dimensional m x n matrix AFM, where
each row represents a playlist and each column represents an
acoustic feature. To find archetypes of music a user listens
to, we apply factorization to the centered matrix AF M (all
columns have a mean value of 0 and a standard deviation
of 1) as this allows us to conduct a Principal Component
Analysis (PCA) [25] via SVD [26]. Based on the principal
components (PCs) obtained by the conducted PCA, we explain
differences in playlists and, more importantly, estimate the
number of acoustic features clusters (ACs), by the explained
variance of each PC (squared singular values s? (diagonal
of ¥)). Having obtained the number of ACs £k = 5 (the
accumulated variance of the principal components is 85.64
and hence greater than the 80% threshold at this point) we
compute the clusters by applying k-means on the dimension-
reduced matrix AF M. The clustering assigns each playlist
and hence, implicitly each track, to a playlist archetype that
allows capturing a user’s preferences towards certain types
of music. We depict the result of this approach in Figure 2,
where each playlist is represented by an integer that represents
the cluster assignment. The clusters are marked by individual
colors and numbers and are annotated with the according
acoustic feature. We observe that playlists that are highly
influenced by instrumental and acoustic features are separated
from the remaining playlists by the first PC. Furthermore, PC1
and PC2 separate energetic playlists with high tempo from
the remaining playlists. Finally, we are also able to separate
playlists with high valence and danceability characteristics by
PC1 and PC2. PC3, not visible in Figure 2, separates playlists
with high speechiness values from other playlists. The clusters
(archetypes) obtained serve as one notion of context to be used
for the computation of context-aware track recommendations.

B. Situational Clusters

Besides capturing musical preferences, we also aim to
contextualize playlists by extracting situational context from
the names of playlists. The underlying assumption here is that
the names of playlists provide information about the situational
context in which the playlist’s tracks are listened to (e.g.,
“Summer Fun”, “Workout Mix”, or “Christmas”). Along the
lines of [6], [7], we mine for activities and other descriptors
(seasons, events, etc.) in the names of playlists. As depicted
in Figure 1, we firstly stem and lemmatize all playlist names.
Next, we remove stop words and non-contextual terms (e.g.,
genre, artist and track names) as these do not provide any
contextual information. For the resulting bags of lemmata
describing each playlist, we compute the term frequency-
inverse document frequency (tf-idf) for each bag of lemmata
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Fig. 2. Latent Representation of Playlist Clusters

representing a playlist name. Playlist similarities can now be
computed by the pairwise cosine similarity of the resulting
vectors. Based on these similarities, we span a distance matrix
and find contextually similar playlists by applying k-Means
clustering. As we evaluate our approach using the same dataset
as [6] (cf. Section VI), we set the number of clusters to k = 23,
as proposed in the original approach. This provides us with
situational clusters capturing in which context a user listened
to certain tracks that we incorporate in a RecSys in the next
step.

C. Recommendation Computation

The previous steps provide us with information about (i) a
user’s preference for playlist archetypes and (ii) the situational
context in which a user listens to certain tracks. This infor-
mation is extracted in the form of user-cluster assignments.
We now combine these clusters and the listening history of
users to compute track recommendations. Particularly, we
propose to utilize FMs [9] to compute a predicted rating
7 for a given user ¢ and a given track j, incorporating
situational clusters (SCs) and acoustic feature-based clusters
(ACs). We process the input for the rating prediction task as
follows: first, <user,track>-pairs are enriched by assigning the
corresponding contextual clusters to each user-track pair, now
forming <user,track,AC,SC>-tuples. By adding a fifth column
rating to the dataset, we derive the input matrix R for our
rating prediction problem to be solved by the FM: for each
unique <user,track,AC,SC>-tuple, the rating r;;s. is 1 if a
user ¢ has listened to a track j in situational context s in a
playlist belonging to archetype c. Our dataset does not contain
any implicit feedback by users (i.e., play counts, skipping
behavior or session durations). Therefore, we cannot estimate
any preference towards an item as i.e., proposed by [13].
However, adding a track to a playlist is a clear preference
for the song for us. However, as no weighting is possible, we
assign binary preferences: for each <user,track, AC,SC>-tuple,
for which we cannot obtain a rating for, we assume the rating
to be r = 0 (as proposed by [27]). In our dataset (as presented
in Section VI), we observe that the class distribution of
relevant and irrelevant tracks is highly imbalanced as naturally,

users only listen to a small fraction of the songs available.
Therefore, we rely on oversampling in order to achieve a 1:1
ratio between relevant and irrelevant tracks on which we train
and test our classifiers to avoid bias towards negative values.

Based on this data, for computing the predicted rating , we
model the influence of a user i, a track j, the situational cluster
s and the content-based cluster ¢ on 7 in a FM. Relying on
FMs, we are moreover able to model all pairwise interactions,
allowing to model the influence of the simultaneous occurrence
of two variable values, i.e., of a track j and the contexts s
and ¢ or a user ¢ and the contexts s and c. Furthermore,
we model the interaction of the contexts ¢ and s which
can be interpreted as the influence of the current activity
of a user (SC) on the playlist archetype (AC) and vice
versa. This is shown in Equation 4, where we show that
the proposed FM computes 7 by estimating a global bias
(wp), estimating the influence of the user, track as well as
the contexts (3", w;x;) along with estimating the quadratic
interaction effects of those (Z?:Z. 41 (0, 0j)w;x5). However,
instead of learning all weights w; ; for the interaction effects,
as traditional approaches as logistic regression do, FMs rely
on factorization to model the interaction as the inner product
of low dimensional vectors ((;, v;)) [9].

n n n
TRM :wo—I—Zwimi—i—Z Z <U_;7U_3>$i$j @)
i=1 i=1 j=i+1
The weights of the latter interaction effects are computed by
applying matrix factorization during the FM optimization us-
ing a Markov Chain Monte Carlo (MCMC) solver as proposed
by [9]. For the top-n recommendations task, we consider all
tracks with 7 < 0.5 and hence, all tracks with a predicted
rating below 0.5 as irrelevant. This proxy for the perceived
usefulness of a user towards an item is finally used to rank
the remaining tracks and cut off @Qn to retrieve a list of n
recommendations.

VI. EVALUATION
A. Evaluation Methodology

We assess the performance of recommendation models in
a 5-fold cross evaluation with random sampling, where we
compute a predicted rating # for all tracks in the test set and
hence, compute the probability whether a certain user listened
to a certain track in a certain situational cluster. The evaluation
metrics are computed for each fold separately and averaged
over all folds. For assessing the performance of the rating
prediction task for the different recommendation models, we
compute the root mean squared error (RMSE). For assessing
the performance of different recommendation models on the
top-n recommendations, we compute the predicted rating  for
each track in the current test set. Using the predicted ratings
7 as well as the actual ratings r in the test set, we compute
the precision, recall and F; measures.

B. Evaluated Recommender Systems

To assess the effects of incorporating different contextual in-
formation encoded as clusters into a recommendation system,



TABLE I
OVERVIEW OF EVALUATED MODELS AND RATING PREDICTION
EVALUATION RESULTS

Model | CF AF AC SC | RMSE
R 0.5
MP 0.71
CF v 0.75
AF v v 0.44
SC v v 0.72
AC v v 0.57
AF+AC | V v v 0.47
AF+SC | v v v 0.40
AC+SC | v v v 0.40

we propose to evaluate a theoretical random baseline, three
baseline approaches and a set of different extended models.

Besides the random baseline, we employ a set of three
baseline methods: (i) a non-model-based approach that rec-
ommends the most popular tracks (MP) of each situational
cluster; (ii) a baseline that incorporates the users’ listening
histories as input to the FM (CF); (iii) a CF model extended
with the acoustic features of the tracks (AF), as this is known
to work well [28]. Please note that here, we use the individual
acoustic features of all tracks and do not rely on acoustic
feature clusters in this model.

Table I gives an overview of all evaluated models and the
according input data. We derive a set of extended models
utilizing the situational clusters mined from the playlist names
(SC) and playlist context derived from acoustic feature clusters
(AC). Firstly, we evaluate a context-aware model extending the
CF baseline by incorporating the situational clusters mined
from playlist names (SC). Analogously, we extend the CF
baseline by incorporating the playlist context (AC), the acous-
tic features (AF) and both AF+AC. Finally, we evaluate a
multi-context-aware model that additionally combines both
clusters (AC+SC) and a model incorporating the situational
clusters (SC) mined from the playlist names, the AF+SC
model.

C. Results and Discussion

In the following, we firstly discuss the results of the top-n
evaluation followed by the results of the rating prediction task.

1) Top-n Recommendations: Generally, user satisfaction
has been shown to be highest when presenting the user
with a short top-list of items naturally assuming that this
recommendation list contains a sufficient number of relevant
items [29]. Therefore, we evaluate the top-n performance
of the proposed RecSys for a small number of n. Figure 3
depicts recall, precision and F; for n = 1...10. We observe
that the AC+SC model with an average F;@Q10-score of 0.93
outperforms all other approaches. Notably, it outperforms the
AF+SC model with an average F}-score of 0.89 by 3.70%.
We observe that all model-based approaches outperform the
MP-baseline. Moreover, models leveraging situational clusters
outperform all other models: the AC+SC model is the most
accurate model, followed by the AF+SC model and the SC
model.

Model
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4 MP
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Recommendations n

Fig. 3. Fy-Evaluation forn =1...10

Generally, we observe that models incorporating acoustic
features along with situational clusters provide the best per-
formance independently of the number of recommendations n.
Besides that, we show that for a small number of recommen-
dations n (n < 10), incorporating situational clusters is highly
important and outweighs acoustic features. Moreover, the AC
model leveraging acoustic clusters performs better that the AF
model leveraging all acoustic features for small numbers of n.
The long tail includes several popular tracks with high play
counts, but many more tracks with low play counts (i.e., niche
music). ACs group users who enjoy to listen to similar music,
which is sufficient for small n. However, to recommend tracks
from the long tail, recommending popular tracks does not
suffice. For this scenario, a RecSys needs to accurately model
the user’s preferences by incorporating audio features (AF) of
the tracks in the listening history of each user. Our experiments
show that additionally incorporating the situational context
(SC) improves the recommendation accuracy for both, short
and long lists of recommendations. Hence, we believe that the
findings based on the evaluation of the top-n recommendations
show that context is vital for improved recommendations,
which is also in line with previous findings (e.g., [16], [20]).

2) Evaluation of the Predicted Ratings: We also evaluated
a rating prediction task. The FM-component in our RecSys
computes a predicted rating 7, i.e., the probability of a user
listening to a certain track in a certain situational cluster.
Please note that this naturally also impacts the ranking of
items as we rank the items based on the predicted rating 7 and
consider all items with a predicted rating 7 < 0.5 as irrelevant
and sort the remaining items in descending order by 7.

We provide the results of the rating prediction measures
computed over the whole test set in Table I. Our results
show that the AC+SC and the AF+SC models achieve the
lowest error rates across all error measures. Hence, both
models incorporating acoustic features and situational clus-
ters (AC+SC, AF+SC) outperform a model solely using the
situational clusters (SC) by 44.44.% and a model solely using
acoustic-feature clusters (AC) by 29.82%, respectively. Along
with the evaluation of the top-n recommendations in the
prior experiment, these findings strongly support our initial



hypothesis that clusters and the interaction effects between the
input variables are highly beneficial for context-aware track
recommendations.

Interestingly, the most popular (MP) approach outperforms
the CF- as well as the SC-model. However, this is, as the
MP approach assigns the top-n most popular tracks with a
predicted rating of 7 = 1 and the remaining (unpopular) items
with no rating and thus, we assume a predicted rating of 7 =
0. In contrast, the model-based FM approaches estimate 7,
the probability whether a given user has listened to a given
track in a given situational cluster. Ultimately, for non-relevant
and correctly classified tracks in the test set, the error is O
for the most popular approach, whereas there is an error for
the model-based approaches (although the track is correctly
classified). This is, as all tracks with a predicted rating 7 <
0.5 are classified as irrelevant which yields a true positive
for the classification-based measures, but the rating prediction
measures indicate an error in the range between 0 and 0.5.

3) Estimating the Interaction Effects: Finally, we are also
interested in estimating the impact of interaction effects on
the recommendation quality. Therefore, we compare the per-
formance of a FM that does not exploit any interaction effects
and a FM that leverages interaction effects (as utilized in the
previous experiments) based on the best user model detected
(AC+SC). Our experiments show that adding interaction ef-
fects allows for a 17.41% higher Fi-score (0.88 vs. 0.75) and
a lower RMSE (0.41 vs. 0.67). This again strengthens our
hypothesis that those effects are beneficial in such a scenario.

VII. CONCLUSION AND FUTURE WORK

We presented a multi-context-aware RecSys, jointly exploit-
ing (i) situational context extracted from the names of playlists
and (ii) playlist archetypes that share acoustic characteristics
to model which kind of music is listened in certain situa-
tional contexts. In an offline evaluation, we show that (i) the
integration of situational context improves the precision of
music RecSys and that (ii) acoustic features and thereby, a
user’s musical taste, are particularly suitable to retrieve tracks
a user likes from the long tail. We show that interaction effects
between situational context and musical preferences provides
the most accurate recommendations and simultaneously covers
the long tail well. As for future work, we believe that the use
of FMs allows for easily extending our current approach with
further notions of context (e.g., emotion or culture).
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