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ABSTRACT
Next-track music recommendation is the task of automati-
cally determining the next song to play in a music listening
session. Almost all music streaming platforms on the web
provide their users with such a feature today. In this work,
we propose the use of language modeling techniques for this
task and investigate how well these techniques perform in the
context of popular and also more diverse music. For this, we
implement two basic language models, one based on n-grams
and the other based on a recurrent neural network. We eva-
luate these models on two datasets, one limited to popular
music and one consisting of more diverse tracks. Further,
we also compare them with a nearest-neighbor model. Our
results suggest that language models perform well in the
context of popular music and can be used both as a basis
for more sophisticated models and as a strong comparative
baseline.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H5.5 [Information Interfaces and
Presentation]: Sound and Music Computing

General Terms
Music Recommendation, Playlist Continuation

Keywords
Music Recommendation, Playlist, Next-Track, Algorithm,
N-Gram, Language Model

1. INTRODUCTION
Nowadays, almost all music streaming services on the web

provide their users with a feature to automatically determi-
ne the next song to listen to, based on the user’s current
listening session and possibly their past listening behavior
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and general preferences. This feature is an example of a re-
commender system, and the specific problem is known as
next-track recommendation.

A single listening session (or playlist) Xi is given as a tem-
porally ordered sequence of tracks, i.e., Xi = [t1, t2, ..., tn].
The task of a next-track recommender is then to take the
current listening session of the user and predict the most
likely—in other words, most appropriate—next track to con-
tinue the session with. Effectively, such a recommender can
be considered as a model learning a probability distributi-
on p(Xj) over all possible listening sessions and the task of
recommending the most likely continuation as finding the
solution to

continuation(Xi) = argmaxt∈T p(Xi + t) (1)

where T is the set of all available tracks and Xi+t is the liste-
ning session resulting from appending track t to session Xi,
i.e., Xi + t = [t1, t2, ..., tn, t]. This can further be generalized
to not only determine the single most likely continuation,
but a list of the n most likely continuations.

Many different approaches for solving this task have be-
en proposed over the years. Quadrana et al. [11] provide
an overview of approaches for sequence-aware recommenda-
tion, which can be regarded as a generalized form of the
next-track recommendation problem. These approaches in-
clude pattern mining [14], Markov models [9], and recurrent
neural networks [17]. Other approaches are based on auto-
encoder networks [13, 18]. Another popular technique, most
often used as a comparative baseline, are nearest-neighbor
models [2, 6, 5, 7].

Existing approaches can be divided into those that view
listening sessions as pure lists of track identifiers, and tho-
se that make use of additional features of tracks, including
track metadata, audio features or lyrical features. In this
work, we take the former approach—i.e., we do not make
use of any features of the tracks in a session. Specifically, we
regard listening sessions as sentences, formed from words gi-
ven by track identifiers, as has been done before for example
by McFee and Lanckriet [9]. We then train a language mo-
del on those sentences and use that to predict continuations
for other sentences (listening sessions). Language models are
statistical models that learn a probability distribution p(s)
over the set of all possible sentences S of a language. Note
that this is exactly the kind of distribution we need for the
next-track recommendation task. We hypothesize that liste-
ning histories and playlists—at least those of users focusing
on popular music, due to them having a relatively limited
“vocabulary” but at the same time a relatively large number



of patterns this vocabulary appears in—have a structure si-
milar to natural language and therefore lend themselves to
the use of language models.

With this work, we attempt to answer the following rese-
arch questions:

• RQ1: Can language models perform well for the next-
track recommendation task?

• RQ2: Are there differences in performance for langua-
ge models between different types of listening sessi-
ons/playlists and if yes, can we explain them?

The remainder of this paper is structured as follows: In
Section 2, the different language models we propose for sol-
ving the next-track recommendation problem are explained.
Section 3 details the experiments we performed to evaluate
our approaches as well as the datasets we used for the eva-
luation. In Section 4, the results of these experiments are
given and discussed. Lastly, we give a conclusion of those
results in Section 5.

2. METHODS
In this section, the language models we use to tackle the

next-track recommendation problem are explained. We im-
plemented two different types of language models. The first
model, explained in Section 2.1, is an n-gram based model
using backoff smoothing. The second model, presented in
Section 2.2, is a neural language model using a recurrent
architecture.

2.1 N-Gram Language Model
An n-gram is a subsequence of length n of a longer se-

quence. Consider for example the listening session X =
[t1, t2, t3, t4]. This session can be decomposed into three 2-
grams: [t1, t2], [t2, t3], and [t3, t4]. An n-gram language model
is a language model which makes the assumption that a gi-
ven word in a sentence only depends on the n − 1 previous
words in the sentence, i.e.,

p(ti|t1, t2, ..., ti−1) = p(ti|ti−(n−1), ..., ti−1) (2)

In other words, such a language model can be trained on
all n-grams of a set of sentences instead of the complete
sentences. The probabilities can then be determined as

p(ti|ti−(n−1), ..., ti−1) =
c(ti−(n−1), ..., ti−1, ti)

c(ti−(n−1), ..., ti−1)
(3)

where c(s) is the number of occurences of sequence s in the
training set. For real language models, these probabilities are
often discounted slightly to “set aside” probability mass for
words that were not encountered during training. We make
the simplifying assumption that all tracks available to the
system will be seen during training and therefore don’t use
discounting. Such models have the advantage of being very
easy and fast to train even on very large data sets and are
known to work remarkable well considering their simplicity.

One limitation of a simple n-gram model is that it is li-
mited to a fixed sequence length n. This limitation can be
overcome by training multiple models for different values of
n and then combining them via a procedure called backoff.
In a simple backoff model, the probability p(ti) is first de-
termined using the largest value for n for which a model
was trained. If this probability is 0, because the sequence

ti−(n−1), ..., ti−1, ti was never encountered in the training
data, the probability is instead determined using the next-
lower value for n for which a model was trained etc.

For our approach, we decided to train n-gram models
for n ∈ {1, 2, 3, 4}. We also implement a backoff model,
for which we further introduce a parameter kn, inspired by
Katz’ backoff model [8], that gives a minimum threshold for
how often a given sequence must have been encountered in
the training data to be considered. The probabilities in our
model are then finally given by

pn(ti|ti−(n−1):i−1) =


c(ti−(n−1):i)

c(ti−(n−1):i−1)
c(ti−(n−1):i) ≥ kn

pn−1(ti|ti−(n−2):i−1) otherwise

(4)

where ta:b is the sequence of words ta to tb.
This was implemented in Python. For the implementation,

a further simplification is possible. Since we don’t actually
need probability values, but only want to output candidate
continuations in order of probability, it is possible to simply
save lists of all continuations for prefixes of length n − 1,
ordered by frequency, and draw predictions from these lists.

2.2 Neural Language Model
The second kind of language model we propose is a neural

language model based on a recurrent architecture. A neural
language model is a neural network which produces a vector
of probability values as its output. The vector has the same
number of elements as there are distinct words in the mo-
deled language (i.e., the language’s vocabulary size). Every
element of the vector thus corresponds to one word, and the
value of that element is the probability that this word is
the next work in a text, given the history of previous words
that the network got as its input. In other words, a neural
language model learns the probability distribution

p(ti|ti−n, ..., ti−1) (5)

For our approach, we use a recurrent architecture. An il-
lustration of this architecture is given in Figure 1. Our net-
work takes a sequence of track identifiers as input. The first
layer of the network calculates a semantic vector space em-
bedding of the inputs. This embedding is then fed into a re-
current layer using GRU cells [3] with tanh activation. This
layer is effectively responsible for recognizing the relevant
patterns in the input sequence. Both of these layers consist
of

√
|T | units, where T is the set of all tracks; preliminary

experiments have shown that this number of units performs
well. The recurrent layer utilizes variational dropout as de-
scribed by Gal and Ghahramani [4], on both the input and
recurrent connections. Finally, the network has a dense layer
of |T | units, with softmax activation to obtain probabilities
as output.

The network was implemented in Python using Keras1.
For training, categorical_crossentropy was used as loss
function and Adam as optimizer.

For training the network, the listening sessions in the trai-
ning data are split into subsequences of a predefined length,
and all of those subsequences are fed to the network for trai-
ning, using the last element of the sequence as the target
value and the elements before that (the prefix) as the input
to the network. The length of those subsequences is control-
led via a hyperparameter specifying how long the prefixes

1https://www.keras.io/



Figure 1: The architecture of the neural language model.

should be (the subsequences are then one element longer
then the prefix).

3. EXPERIMENTS
In this section, the experiments we conducted to test the

applicability of language models for the next-track recom-
mendation task are described. First, in Section 3.1, the data-
sets we used for the experiments are presented. Section 3.2
discusses the nearst-neighbor baseline we use to compare
our models against. After that, we explain our experimental
setup in Section 3.3.

3.1 Datasets
As we attempt to assess the applicability of language mo-

dels to the next-track recommendation problem for different
types of playlists/listening sessions, we use two different da-
tasets for our experiments. As our results should also be
comparable to already existing work, we decided to use da-
ta from sources that are used extensively in the literature [9,
10, 1, 6]. For these reasons, we decided to use data obtained
from the two music playforms Last.fm2 and Art of the Mix3

for conducting the experiments.
The Last.fm dataset we used is based on the LFM-1b [12]

dataset and we relied on listening sessions extracted by Ja-
cob Winder [16] as follows. First, listening sessions are con-
structed from singular listening events such that if two lis-
tening events belong to the same user and are no longer
than 30 minutes apart they are considered to belong to the
same listening session. Also, if the same track occurs more
than once in direct succession, all the repeat occurences are
dropped. After further removing all the listening sessions
with only one track, this gives a dataset of approximately
62 million sessions.

We then filtered this dataset as follows to make it meet
our purposes. First, we dropped all sessions with fewer than
three tracks. Then, we extracted a chunk of the first three
million remaining sessions. Lastly, we dropped all the sessi-
ons containing tracks that occur in fewer than 840 sessions
in this chunk. This has two benefits: First, it restricts the da-

2https://www.last.fm/
3http://www.artofthemix.org

Table 1: Detailed dataset information.
Dataset Playlists Tracks Avg. Occurences per Song

LFM-1b 20,824 2,673 56.19

AotM-2011 2,715 12,355 2.05

taset to listening sessions consisting of popular music only,
which is exactly the type of sessions for which we hypothesi-
ze that language models should work well. Second, it makes
the dataset small enough so that the hardware available to
us can handle training our models on it.

As the second dataset, we used the AotM-2011 dataset
[10] as published by Vall et al. [15]. As Art of the Mix is a
platform for music enthusiasts, the playlists users upload to
it tend to be more diverse on average than listening sessions
on Last.fm. Therefore, this dataset is not limited to popular
music and contains many tracks that occur only a few times.
It is therefore a good choice for testing the inverse of our
hypothesis, namely that language models should not work
so well on such playlists. More details about the makeup of
the two datasets are given in Table 1.

3.2 kNN Baseline
To have a baseline to compare the performance of our mo-

dels against, we also train and evaluate a nearest-neighbor
model (kNN) [2] on the same datasets as our models. We
chose this baseline because nearest-neighbor models are pre-
valent throughout existing literature [2, 6, 5, 7].

A kNN is a simple supervised machine learning algorithm.
It works by finding—using some arbitrary distance metric—
the k nearest neighbors in feature space to a given data point
and then determining the class label (in case of classification)
or the value (in case of regression) for that given data point
based on the labels/values of those neighbors. In the case of
classification, this is often done by (weighted) majority vote
among the neighbors.

To implement this, we used the Python package implicit4.
This package provides different distance metrics for deter-
mining neighbors. We used cosine similary and item-item
for the baseline, as preliminary experiments showed them to

4https://pypi.org/project/implicit/0.3.8/



Table 2: Results for the LFM-1b dataset.
Model R@1 R@5 R@20 MRR@5 MRR@20

N-Gram 0.757 0.843 0.882 0.789 0.794

Neural 0.733 0.820 0.878 0.766 0.776

kNNi 0.619 0.786 0.883 0.619 0.695

kNNc 0.635 0.799 0.869 0.635 0.708

Table 3: Details for language models on LFM-1b.

Model R@1 R@5 R@10 R@20 R@100

N-Gram 0.757 0.843 0.871 0.882 0.886

Neural 0.733 0.820 0.854 0.878 0.911

work best. As with the language models, the kNN did not
make use of any audio features; for the similarity computa-
tions, the list of song identifiers in a listening session was
used as the vector representation of that listening session.

3.3 Setup
We performed one experiment for every combination of

model (n-grams, neural language model, and kNN baseline)
and dataset (LFM-1b, AotM-2011). This gives a total of six
experiments.

For each experiment, we performed a grid search over a
set of reasonable hyperparameter values to find the best pa-
rameter settings for every model-dataset combination. To
eliminate possible bias resulting from a single, fixed train-
test split, we used 5-fold cross validation for the grid search.
To make results reproducible, a fixed seed was used for the
cross validation. For the n-gram model, we decided to always
train the model on n-grams ranging from length one to four
and grid search over the backoff tresholds kn ranging from
zero to six. For the neural language model, we performed the
grid search over the dropout rate (0.2, 0.4), and the prefix
length (2, 3, and 4). For the kNN baseline, we performed a
grid search over k, the number of neighbors, with possible
values of 10, 20, 50, 100, 200, and 300.

In every experiment (and every fold within it) the model
is first trained on the training portion of the data. After
that, the evaluation is performed as follows. For every liste-
ning session in the test portion of the data, the last track
of the session is removed and the trained model is asked to
produce a ranked list of candidate continuations for the shor-
tened session. Based on these predictions and the known real
continuations—those that were removed—we then calcula-
te the metrics recall (R) and mean reciprocal rank (MRR),
taking into account only the first, the top five and the top
twenty of the predicted candidate continuations, respective-
ly.

4. RESULTS
In this section, we present and discuss the results of our

experiments. The results for the evaluation on the LFM-1b
dataset are summarized in Table 2. In this table, kNNi is
the kNN model with item-item distance, using k = 20, and
kNNc is the same with cosine similary, using k = 50. We can
see that both language models (n-grams and the neural mo-
del) work well on this dataset and significantly outperform
the kNN baseline in all but one metric (Recall@20). Thus,
we can already positively answer RQ1—language models can

Table 4: Results for the AotM-2011 dataset.
Model R@1 R@5 R@20 MRR@5 MRR@20

N-Gram 0.021 0.029 0.044 0.024 0.025

Neural 0.017 0.024 0.034 0.019 0.020

kNNi 0.027 0.044 0.062 0.033 0.035

kNNc 0.018 0.024 0.036 0.020 0.022

indeed perform well for the next-track recommendation task.
The better performance for recall at lengths 1 and 5 sug-

gest that the language models are better than kNNs at lear-
ning and correctly ranking the exact patterns in people’s
music listening behavior—at least for people leaning heavi-
ly towards popular music—and are therefore more likely to
find the correct continuation as one of their first predictions.
This is further supported by the results for the mean reci-
procal rank (MRR), where the language models beat kNNs
event at length 20, suggesting that they tend to rank the
correct continuation higher on average. For recall at length
20, the kNN model using item-item distance shows the same
performance as the n-gram model and slightly better perfor-
mance than the neural model. This suggests that the kNN
model does indeed learn the relevant patterns, but is not as
good at ranking them correctly.

Between the two language models, the n-gram model con-
sistently outperforms the neural one on this dataset, despite
its simplicity. Looking at the different metrics, we identify
an apparent trend—the gap between the n-gram model and
the neural model seems to become smaller at larger lengths.
To further investigate this, we also calculated the recall for
both models on the LFM-1b dataset for lengths 10 and 100.
The results for this are given in Table 3. They support this
trend and show that the neural model even overtakes the
n-gram model at some point and outperforms it at length
100, suggesting that the neural model is better at detecting
patterns, but worse at ranking them.

The results for the experiments on the AotM-2011 dataset
show a different picture. They are summarized in Table 4.
Here, the kNN model using item-item distance consistently
outperforms both language models. Due to this, we can par-
tially answer RQ2—there apparently are differences in per-
formance for language models on different types of listening
sessions. The fact that language models perform better than
nearest-neighbor models for our filtered Last.fm dataset but
worse for the AotM-2011 dataset supports our hypothesis
that language models work well in the context of users lea-
ning towards popular music, where we deal with a limited
number of frequently occurring patterns, but not so well for
scenarios where users listen to more diverse music.

5. CONCLUSION
In this work, we proposed to use common language mode-

ling techniques to solve the next-track music recommendati-
on task. We were able to show that these approaches perform
well in the context of popular music, but not so well for sce-
narios in which users prefer playlists that are more diverse.
Both of the language models we proposed are simple and
easy to train and are therefore also well suited for use as a
baseline for the development of more sophisticated models.

For future work, we will have to perform further experi-
ments to test our hypothesis—namely that language models



work well for popular music contexts—by evaluating our mo-
dels on additional datasets obtained from different sources.
Another possible direction for future work is the use of more
sophisticated language models for the task. We believe that
a language model that is better optimized for this specific
task could show significantly better performance still.
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