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Abstract—Estimating the success of a song before its release
is an important music industry task. Current work uses audio
descriptors to predict the success (popularity) of a song, where
typical measures of success are chart measures such as peak po-
sition and streaming measures such as listener-count. Currently,
a wide range of datasets is used for that purpose, but most of
them are not publicly available; likewise, available datasets are
restricted either in size, available features, or popularity mea-
sures. This substantially impedes the evaluation of the predictive
power of a wide range of models. Therefore, we present two
novel datasets called HSP-S and HSP-L based on data from
AcousticBrainz, Billboard Hot 100, the Million Song Dataset, and
last.fm. Both datasets contain audio features, Mel-spectrograms
as well as streaming listener- and play-counts. The larger HSP-L
dataset contains 73,482 songs, whereas the smaller HSP-S dataset
contains 7,736 songs and additionally features Billboard Hot
100 chart measures. In contrast to previous publicly available
datasets, our datasets contain substantially more songs and richer
and more diverse features. We solely utilize data from the public
domain, allowing to evaluate and compare a wide range of models
on our datasets. To demonstrate the use of the datasets, we
perform a regression and a classification (popular/unpopular)
task on both datasets using a wide variety of models to predict
song popularity for all target measures.

Index Terms—hit song prediction, popularity prediction,
dataset, music information retrieval, audio features

I. INTRODUCTION

An important task in the music industry is the prediction
of hit songs, or more broadly, song popularity. In most cases,
popularity is determined by sales, listening data on streaming
platforms, chart positions, or the number of weeks a song
stayed in the charts. In general, the goal is to predict the
success of a song before or shortly after its release. This can,
e.g., be of great interest to record labels to decide whether
they should support a song. It can also be a tool for musicians
to get feedback on a song during creation and tweak their
song towards success. Also, music platforms may use such
predictors to identify potentially popular tracks to recommend
these to users with an inclination to popular content [1].

A number of approaches model the task as a regression
task, relying on a continuous popularity value such as listener-
counts or chart positions as their target [2]–[4], while others
model it as a classification task based on classes, such as
hit and non-hit as their target [5]–[7]. To this end, the two
most common popularity measures are chart data and listening
data collected by online music platforms such as last.fm
and Spotify . Here, two common measures to quantify the
popularity of a song are listener- and play-counts. Both of them

are generated by counting unique listeners or song listening
events on the particular platform. In contrast, charts are not
limited to a particular platform. They usually include sales data
and other measures of popularity in addition to streaming data.
Details on the criteria used to determine the Billboard Hot 100
charts are discussed by Lao et al. [8].

Current approaches towards popularity prediction include
neural network-based models such as the convolutional neural
networks (CNN) based approach proposed in [3], [4], or
more traditional approaches such as logistic regression [9],
[10], decision trees [6] and SVM based models [7], [9], [11].
Typically, song popularity prediction approaches are evaluated
in an offline evaluation setup. This requires sufficiently large
datasets that provide a wide variety of song features and
popularity values. However, there are no publicly available
datasets that fulfill these criteria. In prior work [2], we released
the currently only available dataset for popularity prediction,
however, it is limited in the number of songs contained, the
number of available features, and popularity scores.

In this paper, we present two novel datasets for hit song
prediction (HSP): HSP-S and HSP-L. They are substantially
larger than currently available dataset with respect to the num-
ber of features contained. Both datasets provide high- and low-
level audio features stemming from AcousticBrainz [12] and
short representative MP3 samples, as well as Mel-spectrogram
features from the same samples. Further, we include listener-
and play-counts gathered from last.fm for both datasets. Our
larger dataset, HSP-L, contains 73,482 songs with audio fea-
tures, listener- and play-counts, making it substantially larger
than previous datasets. In addition, we provide the release
year information for 65,575 songs as provided by the Million
Song Dataset [13]. Therefore, it fits well for deep learning
approaches. The smaller dataset, HSP-S, contains 7,736 songs,
listener- and play-counts as well as Billboard Hot 100 data, and
release year information is available for 7,449 songs. Hence, it
is well suited to run experiments that require chart data. Both
proposed datasets are published on Zenodo1 and the source
code of our evaluation is available on GitHub2.

To show the utility of the datasets, we conducted ex-
periments based on the two most widely used approaches
regarding hit song prediction: (i) regression (e.g., performed
by [2]–[4], [9], [10]) and (ii) classification (e.g., performed

1https://doi.org/10.5281/zenodo.5383858
2https://github.com/dbis-uibk/hit-prediction-code/tree/ism2021



TABLE I
DATASETS UTILIZED FOR INTRINSIC HIT SONG PREDICTION, WHERE HSP-S AND HSP-L ARE THE DATASETS PROPOSED IN THIS WORK.

NOTATION: PD—DATASET STEMS FROM PUBLIC DOMAIN, AV—DATASET IS PUBLICLY AVAILABLE.

Paper Type of audio features Mel-Spect. Features Charts Data Listening Data PD AV No. of Songs

[3] audio yes - KKBOX no no approx. 125k
[4] audio yes - KKBOX no no approx. 2M
[11] in-house audio database - AU, UK, US - no no approx. 1,700
[6] in-house audio database - UK - no no 266
[14] lyrics features - US - no no 6,815
[15] EchoNest features - UK - yes no 5,947
[7], [16] HiFind database of music - - - no no 32,000
[2] Essentia audio features no US - yes yes 11,664

HSP-S Essentia audio features yes US last.fm yes yes 7,736
HSP-L Essentia audio features yes - last.fm yes yes 73,482

by [5], [11], [16]). We conducted experiments using linear
models, random forests, support vector machines, feedforward
neural networks, and convolutional neural networks.

The main contributions of this work are two novel datasets
(HSP-S and HSP-L) that (i) provide substantially more songs,
(ii) contain a richer and more diverse feature set compared
to previous datasets that are mostly not publicly available (cf.
Table I), and (iii) utilize solely data from the public domain.

These datasets can be used for a variety of popularity
prediction approaches and evaluation setups. Particularly, we
believe that for deep learning approaches, these comprehensive
datasets can be a key asset. We demonstrate the utility of our
datasets by a set of experiments and set baseline results for
a broad spectrum of models. We believe that these datasets
can enable further research on song popularity prediction as
particularly the HSP-L dataset contains a large number of
samples and features that can be leveraged by deep learning
approaches. Both datasets provide a rich set of audio features
describing these songs and can hence also be utilized for
several further music retrieval and analysis tasks.

II. RELATED WORK

In the following, we discuss previous approaches towards
song popularity prediction and present the used datasets.

Dhanaraj and Logan [11] aim to predict the success of a
song based on acoustic and lyrics features. They investigate
the usage of an SVM and boosting classifiers to automatically
determine whether a song is a hit song and compare their
models with a random baseline. They use an in-house dataset
containing 18,500 songs which they used to compute the
features. Frieler et al. [6] use melodic features as input
for a random forest classifier that is trained to distinguish
commercial successful pop songs from less successful pop
songs. Their dataset consists of 266 pop songs which they
categorized into a hit and a non-hit class using a k-means
clustering using chart data from the UK. In contrast, Singhi
and Brown [14] use lyric features to predict whether a song
belongs to the hit or non-hit class. Their lyrics features include
31 rhyme, syllable, and meter features that they process with
a Bayesian network. Their notion of a hit song is a song
that made it to the Billboard Year-End Hot 100 singles charts

between 2008-2013. For non-hits (flops) they choose songs
from the same set of artists that did not make it to the charts.
The dataset contains 492 hits and 6,323 flops. Ni et al. [15]
aim to distinguish songs that made it to the top five of the
UK charts (hits) from less popular songs that resided in the
range 30-40 in these charts. They use musical features from
EchoNest that they feed into a shifting perceptron. The dataset
utilized contains 5,947 unique songs. Pachet and Roy [16]
introduce the HiFind Database containing music metadata that
are categorized into 16 categories covering a broad spectrum
of a song such as style, genre, or instruments. Each of these
categories contains more specific binary features that e.g., state
if an acoustic guitar is present in the given song. The dataset
contains some notion of popularity in the form of popularity
labels (low, medium, and high). They predict those three labels
using an SVM classifier with an RBF kernel. Both Yang et
al. [3] and Yu et al. [4] use a neural network-based model
trained on a dataset that contains popularity measures based on
data from KKBOX Inc, a Taiwanese music streaming platform.
The dataset used by [3] was collected between 10/2012 and
09/2013 and contains 125k songs with play-counts of 30k
users. The dataset used by [4] was collected from 01/2016 to
06/2017 and contains play-counts of 30k users and 2M songs.

In contrast to the previously discussed literature, our pre-
vious work [2] provides a publicly available dataset. We
combined data from the Million Song Dataset with chart data
from the Billboard Hot 100 charts. In terms of features, we
include Essentia audio features extracted from 30-second rep-
resentative samples resulting in a dataset with 5,832 hit songs
and the same number of non-hit songs. For the prediction, we
propose a regression-based neural network model to predict
the peak positions of a given song based on high- and low-
level features for which we published the source code as well.

TABLE I provides an overview of datasets that have been
used for hit song and popularity prediction. Only a single
dataset is currently publicly available, which on the one hand,
makes it hard to develop robust approaches, and on the other
hand, to compare popularity prediction approaches. In contrast
to most previous works, our datasets are based on publicly
available data and are published. Furthermore, the HSP-L
dataset is also substantially larger than most previous datasets.



III. DATASETS

For the tasks of hit song prediction (HSP) and song popu-
larity prediction, we propose two datasets with complementary
characteristics: The smaller dataset, HSP-S, contains streaming
popularity measures gathered from last.fm and chart measures
obtained from the Billboard Hot 100 charts. For this dataset,
the number of tracks on the Billboard charts puts a natural cap
on the number of tracks. Therefore, we also propose a second,
larger dataset, HSP-L, that focuses on listener- and play-counts
on streaming platforms as the target measure of success. Both
datasets contain audio features stemming from AcousticBrainz
as well as audio features we extract from short MP3 samples
that are at least 30-seconds long (stemming from a private MP3
sample collection of the Million Song Dataset). Additionally,
both datasets contain Mel-spectrograms computed on the same
MP3 samples and release year information from the Million
Song Dataset for most of the songs.

An overview of the features contained in the two datasets is
given in TABLE II. In the following, we describe the creation
of the two datasets (Sections III-A and III-B) and further
detail the audio features (Section III-C) and success measures
provided (Section III-D).

TABLE II
FEATURES AVAILABLE ON THE DATASETS (CLASSIFICATION TAKEN

FROM [2]).

Feature HSP-S HSP-L

Listener-count X X
Play-count X X
Peak position X
Weeks in charts X

Low-level descriptors X X
Mood X X
Voice X X
Rhythm/Beat X X
Chords X X
Mel-spectrograms X X

Number of songs with release year 7,449 65,575
Total number of songs 7,736 73,482

A. HSP-S Dataset

The HSP-S dataset is the smaller of both datasets. For its
creation, we match the Billboard Hot 100 charts between
1958-08-11 and 2019-07-06 with the Million Song Dataset
(MSD) [13] based on artist name and song title using the
following procedure.

First, we convert artist and title strings in both source
datasets to lower case and strip white space at the beginning
and end of each string. After that, we remove all characters that
are not alphanumerical or white space, which e.g., removes
differences in punctuation such as “ft.” vs. “ft” for featuring.
The last step is to substitute multiple successive white space
characters with a single blank space character. Further, we
ensure that there are no entries with an empty artist or title.

Before matching both source datasets (Billboard Hot 100
and the MSD), we drop artist-title duplicates in each dataset

to ensure to not include the same song multiple times. Based
on the resulting strings, we compute the overlapping tracks
based on artist name and song title. This results in 14,248
songs contained in both the MSD and the Billboard Hot 100.

To include last.fm listener- and play-count data, we utilize
the MBID (MusicBrainz IDentifier) mapping3 between last.fm
and AcousticBrainz. We performed the previously described
artist and title cleaning and dropped entries where either of
them is empty. This leaves us with a set of hit songs contained
in the MSD. To ensure a balanced dataset with respect to hits
and non-hits, which is important for binary classification, we
randomly sampled one non-hit from MSD per hit. After that,
we assigned a universally unique identifier (UUID) to each
unique title-artist pair in the set of songs that results from
merging the Billboard, MSD, last.fm, and AcousticBrainz data.
Further, we join those UUIDs into one if two songs have the
same MSD ID, EchoNest ID, or MBID, resulting in a unique
ID that can be used to identify unique songs in our dataset. In
a final step, we merged the extracted features (as described
in Section III-C) with the popularity measure values. This
results in a dataset containing different high- and low-level
audio features (audio and Mel-spectrogram features) from
AcousticBrainz and short MP3 samples (see Section III-C). It
contains 7,736 songs in total with last.fm listener- and play-
count data for all songs and the peak position and the weeks
in the Billboard Hot 100 charts for all hits.

For collecting release year information, we utilize the re-
lease year mapping with MSD IDs provided for the Million
Song Dataset4. To compute the final mapping between the
UUIDs and the release year, we apply the following procedure.
First, we ensure that each original UUID (before the merging
step) maps to the same release year. If this is not the case, we
drop the affected UUID. In the next step, we merge the data
records using the MSD ID. This results in an unambiguous
mapping between UUIDs and release year for 7,449 of the
7,736 songs (96.30% of all songs).

B. HSP-L Dataset

The HSP-L dataset is substantially larger than the HSP-S
dataset as it is not tied to charts data, where only a limited
amount of songs is available. Instead, HSP-L focuses on
last.fm listener- and play-counts as target measures.

Similar to the HSP-S dataset, we use the mapping of the
Million Song Dataset to AcousticBrainz as a starting point and
matched all entries with last.fm popularity data (listener- and
play-count; see Section III-D). Additionally, we merge all the
available features resulting from the application of our feature
selection algorithm described in Section III-C. This results
in a dataset containing the same set of audio features that
are also present in the HSP-S dataset (see Section III-A). We
include the release year following the same procedure as used
for the HSP-S dataset. Please note that the UUID is assigned
to songs individually for each dataset and hence, does not

3https://musicbrainz.org/doc/MusicBrainz Identifier
4http://millionsongdataset.com/sites/default/files/AdditionalFiles/tracks

per year.txt



refer to the same songs. Therefore, it is necessary to compute
a separate mapping of UUIDs and release year for the HSP-
L dataset. In contrast to the HSP-S dataset, this dataset only
contains popularity data stemming from last.fm and hence,
does not suffer from missing popularity values for songs that
never made it to the Billboard Hot 100 charts. Therefore, this
dataset does not contain a hit and non-hit class and hence,
we did not balance the dataset. Further, its size is not limited
by the number of songs that appeared in the charts. The final
dataset contains 73,482 songs with release year information
for 65,575 songs (89.24% of all songs).

C. Audio Features

Our datasets contain audio features extracted with well-
known libraries: we use LibRosa [17] to extract the Mel-
spectrograms in dB-scale with 128 bins and 1200 slots along
the time axis and Essentia [18] for further audio features. We
include the Essentia low-level features consisting of acoustic
descriptors characterizing the song using average loudness,
bark bands, erb bands, mel bands, to name some of the
dynamics and spectral features extracted for a song. Further,
rhythm and tonal features are included5. The included Essentia
high-level features are inferred using the pre-trained classifiers
bundled with the framework and include danceability, mood,
genre, and vocal features.

AcousticBrainz may provide multiple versions for the same
song. Further, the Million Song Dataset contains duplicates.
In either case, we only keep one version per song, that we
identify using the assigned UUID as follows. In a first step,
we validate the quality of our features before selecting the
most representative version. Thus, we compare the histograms
of each feature for both sources (AcousticBrainz and the MP3
samples). We compute a histogram for each feature per dataset.
This step reveals that for multiple features, the histograms
contain outliers: Some of these histograms show a Gaussian
distribution for the predicted probabilities of a given high-
level Essentia feature with a significant outlier (spike) for a
small value range. Those spikes are caused by specific beta
software versions of the low-level Essentia extractors used
by AcousticBrainz for some of the song’s feature versions.
We suspect that those spikes occur because these extractors
compute certain values too often. Therefore, we first remove
samples that were created with different builds of the Essentia
v2.1 beta1 software version that seemed to be affected. This
substantially reduces the peaks. Removing features created
with those software versions ensures that the remaining set
of features are of high quality. The resulting set still contains
multiple feature versions of the same song (identified by the
assigned UUID) as this cleaning step does not remove all
duplicate versions of a song. To subsequently select the most
representative version for each song, we select the feature
version closest to the mean of all remaining feature sets of the
same song (i.e., we use the sample closest to the centroid of

5These features are further described in Essentia’s documentation:
https://essentia.upf.edu/streaming extractor music.html.

each song’s cluster). Along the lines of previous research [2],
we use cosine distance based on the set of all audio features
to determine the song version most similar to the centroid
(the average). This leaves us with a single high- and low-
level feature version per unique song (UUID). Subsequently,
we combine the pairs of high- and low-level features of each
unique song. After applying these cleaning, selection, and join
steps for features stemming from AcousticBrainz and shorter
audio samples from the Million Song Dataset (MSD) [19], we
merge the resulting features from both sources and only keep
those songs where features from both are available, leaving us
with a single version of these features for each song. Further,
we also compute and include Mel-spectrograms on the shorter
audio samples. We dropped a song in the final dataset in case
we could not compute the Mel-spectrogram features. This
leaves us with a dataset containing a single version of all
previously mentioned features for each unique song.

D. Popularity Measures

To obtain popularity measures that can be used as target
value for the task of song popularity prediction, we use
Billboard chart information (as previously done by [2], [14])
as well as listener-counts and play-counts (as previously em-
ployed by [3], [4]) from last.fm. In some rare cases, there are
duplicate entries in either last.fm data or Billboard charts for
songs. To eliminate those, we use the best score (the highest
score for listener-, play-counts, and weeks in charts; the lowest
score for peak ranking in charts) as we consider this the most
representative score. Besides charts and listener- and play-
count data, we also compute Yang et al.’s hit-score [3]. This
score allows mitigating scenarios in which the play-count of a
song is driven by only a small number of users by multiplying
the log of the listener-count with the log of the play-count.

TABLE III
PLAY- AND LISTENER-COUNT STATISTICS ON THE DATASETS (PC =

PLAY-COUNT, LC = LISTENER-COUNT).

Property HSP-S HSP-L

Minimum LC 0 0
Median LC 17,210 8,797
Maximum LC 2,119,960 2,119,960
Minimum PC 0 0
Median PC 53,824 27,554
Maximum PC 22,660,386 22,660,386

TABLE III shows further details on listener- and play-
counts data in both datasets. We observe that the range of
each popularity measure is comparable among both datasets.
Further, it can be seen that the mean for streaming popularity
measures substantially differs. This is caused by the different
sampling strategies used for each dataset. While the number of
7,736 songs in the HSP-S dataset is smaller than the number
of songs contained in the dataset published in [2], it contains
more features and more popularity measures (also including
charts data) that can be utilized for experiments. To the best
of our knowledge, the HSP-L dataset with 73,482 songs
substantially exceeds the size of current, publicly available



Fig. 1. Target label distribution for the HSP-S and HSP-L datasets (normalized; listener- and play-count in log scale).

datasets for the task of song popularity prediction. It is by far
the largest dataset containing a wide variety of features and
streaming popularity measures, that is publicly available.

Fig. 1 shows the distribution of the target labels in our
datasets. For both the listener- and the play-count we compute
the log before scaling it to the range 0 to 1. We note that peak
is the only target where lower values means that the song is
more popular, while for all other targets a higher value means
higher popularity. We observe that naturally, the charts-based
targets (peak and weeks) differ from the remaining targets.
Further, Fig. 1 shows that the median, as well as Q3, and
the maximum of the HSP-L targets are lower in comparison
to their HSP-S counterpart. This indicates that the HSP-S
dataset on average contains more popular songs, which is
likely caused by the fact, that half of them made it to the
charts. For such chart hits it can be assumed that they are
examples of very popular songs.

IV. EXPERIMENTS

In this section, we present the experiments that we conduct
to showcase the utility and applicability of both datasets
presented in Section III. Our experiments cover the two main
approaches towards music popularity prediction (e.g., in [2]–
[5], [11]): (i) modeling popularity prediction as a regression
task, and (ii) modeling it as a classification task and provide
baseline results for a variety of models.

A. Evaluated Tasks

For both the regression and classification task, a wide range
of sources and representations of popularity measures were
used in previous works. For instance, Yu et al. [4] use play-
counts as a popularity measure tackling a regression task while
in our previous work [2], we use the peak position in charts.
Similarly, there is a difference in how popularity is defined
in classification tasks. While Pachet [7] uses three popularity
classes, Ni et al. [15] use a hit and a non-hit class where hits
are songs that appeared in the top five of the charts and non-hit
are songs that appeared in the range between 30 and 40.

To cover most of these representations used in previous
works, we use all four representations contained in our datasets
(peak position and weeks in charts; listener- and play-counts)

and the hit-score defined by Yang et al. [3] in our experiments.
We conduct regression task experiments for each popularity
measure along the lines of [2], [3]; we utilize four different
models that are further described in Section IV-B to predict
the respective popularity measure based on features stemming
from AcousticBrainz and two models to compute predictions
based on the Mel-spectrograms. For the experiments con-
ducted on the classification task, we use the same popularity
measures as for the regression task mapped to a two-class
classification problem as detailed in Section IV-C. We conduct
experiments with four models using the Essentia audio features
stemming from AcousticBrainz and two models using the Mel-
spectrograms. Due to space constraints, we do not provide the
experiments based on Essentia features computed from the
short audio samples as they do not cover the full length of a
song in contrast to those stemming from AcousticBrainz.

B. Models

Along the lines of previous popularity prediction ap-
proaches [2], [3], [5], [7], [11], we propose the following mod-
els for the conducted regression and classification experiments.
We use six models to compute predictions for the regression
task: (i) a linear regression model, (ii) a random forest model
(iii) an SVM-based model, and (iv) a deep feedforward neural
network model used in [2] that all rely on AcusticBrainz fea-
tures, (v) a linear regression-based model using the mean and
standard deviation along the time axis of the Mel-spectrograms
based on the m1 model in [3], and (vi) a CNN model using
Mel-spectrogram features. For the classification task, we adapt
the models of the regression task to perform classification.
Instead of the linear regression model, we use a logistic
regression classifier as a representative of linear models as
used in [9], [10].

We use the implementations of scikit-learn [20] for all non-
network models. The SVM utilizes the default RBF kernel; we
also keep all other default parameters for all models. We use
the SVR implementation for the regression task and the SVC
implementation for the classification task. To use the SVC
implementation with our two-class definition of popularity, we
need to convert the two-class (popular/unpopular) popularity
measure (represented as a one-hot vector) to a single label



value to train the model. This is done by using the index
of the respective class. To obtain predictions, we reverse this
transformation by creating a one-hot encoded vector where we
set the respective class to one.

The Wide and Deep neural network model is based on
the model proposed in [2] and uses the implementation we
provide (based on the Keras API of TensorFlow6). The model
consists of an input layer that is split into two types of
input: high-level Essentia audio features that are directly fed
into the wide part of the network and low-level Essentia
features that are consumed by the deep part of the network.
Each multi-dimensional low-level feature gets mapped to its
feature aggregation block that consists of a dense layer with
an input size fitting the dimension of the features. These
features are aggregated to a single-valued higher-level feature
representation using ELU to activate the output of each block.
The resulting feature representations are then combined with
the high-level Essentia audio features in a concatenation layer.
This layer is the input of a dense layer block of the neural
network and contains one neuron per feature. This block
contains two units, each consisting of a dense layer with ELU
activation followed by a dropout layer (0.1 dropout rate). Each
unit has the same input and output size. The final output layer
of the network consists of a single neuron without an output
activation to compute predictions for the regression task.

Our CNN model is based on the fully convolutional neural
network (FCN) by Choi et al. [21]. We use a Keras port of
the implementation provided by Won et al. [22] (written in
PyTorch)7. It consists of five blocks, where each block consists
of a 2D convolutional layer, followed by a batch normalization
layer, and a 2D max pooling layer. The first and last block
have 64 filters while all others have 128. All convolution
kernel sizes are 3x3 with stride 1. The size of the first three
max pooling layers is 2x4 and the last two have a size of
3x5 and 4x4 respectively and each block uses ReLU as its
activation function. The input size 128x1200 is zero padded
to get an input size of 128x1296. This ensures, that the five
blocks reduces the size to 1x1 with 64 filters. After theses
blocks we apply a dropout layer with 0.5 dropout probability
and use a dense layer to get the appropriate output size (1 for
regression task; 2 for classification task).

C. Experimental Setup

The main purpose of these experiments is to show the us-
ability and applicability of our proposed datasets. To evaluate
our experiments, we use 5-fold cross validation. In terms
of features, we use all Essentia features listed in [2], in
addition to Mel-spectrogram features in dB-scale extracted
using LibRosa [17]. The Essentia features are scaled to the
range [0, 1] by applying scikit-learn’s min-max scaler.

The models implemented based on scikit-learn are trained
using the default settings. For non-network models, we com-
pute a single result per fold that we average over all five folds

6https://www.tensorflow.org/
7https://github.com/minzwon/sota-music-tagging-models

to get the reported scores. We consider the number of epochs
a hyper-parameter as done by [2] and train the neural network-
based models using a grid search where we evaluate every N
epochs up to a maximum number of epochs and report the
results for the best epoch hyper-parameter configuration. We
train the Wide and Deep model with a maximum of 2,500
epochs and evaluate the performance every 100 epochs. For
the FCN we use a maximum of 50 epochs and evaluate every
10 epochs to include the range of the best epochs reported
for this kind of model by Choi et al. [21]. The networks were
trained using the Adam optimizer with the mean squared error
loss function for the regression task.

As for the popularity measures, we use zero as the popu-
larity value for non-hits along the lines of [2] and use 101 as
the peak position popularity value for non-hit songs.

For the binary classification experiments, we need to map
the discrete popularity values to classes. Along the lines of [5],
[6], [11], [14], we use two categories popular (hit) and unpop-
ular (non-hit). Consequently, we need to define a criterion to
distinguish these two classes. For charts data, we use whether
a song appeared in the charts (hits) or not (non-hits) as the
criterion, providing us with a balanced number of hits and
non-hits as the HSP-S dataset is balanced. When using last.fm
data, we use the median of the respective popularity value as a
decision boundary similar to [5] to ensure a balanced dataset.
Note that this results in a different definition for popular
and unpopular songs depending on the underlying popularity
measure. This needs to be taken into account when comparing
results based on charts, listener-counts, play-counts, and the
hit-score defined by Yang et al. [3].

For the evaluation of the regression task, we compute
Spearman’s and Kendall’s ranking correlation coefficients to
capture how well the models rank songs. We argue that the
underlying level of measurement used for chart popularity
measures cannot be considered an interval scale because all
non-hit songs share a common popularity value (O weeks
or peak position 101). This prevents computing a distance
between two non-hits. Arguably, not all non-hits are equal
with respect to the popularity prediction task as they are not
equally popular. This is also indicated by different popularity
values in terms of listener- or play-counts seen among non-
hit songs. Therefore, the ranking coefficient scores can be
assumed to be more expressive than, e.g., the mean absolute
error or the root mean squared error because all underlying
levels of measurement fulfill the properties of an ordinal scale.

To evaluate the classification task, we report the macro-
averaged accuracy and F1. Note that we model popular and
unpopular as two separate classes instead of one binary label.
We chose macro averaging to compensate for the slight
imbalance between the popular and unpopular class resulting
from the used median to distinguish the two classes because
there is a small number of songs whose popularity values are
equal to the median value and therefore need to be assigned to
one class. Notice that this only happens for the listener-count,
play-count, and hit-score experiments.



TABLE IV
EVALUATION RESULTS FOR THE REGRESSION TASK (LC = LISTENER-COUNT, PC = PLAY-COUNT, HS = HIT-SCORE); BEST RESULT PER DATASET,

TARGET, AND METRIC IN BOLD.

Spearman’s ρ Kendall’s τ

Target Dataset LinReg

RndFores
t

SVM
W&D

MelS
p-

LinReg
FCN

LinReg

RndFores
t

SVM
W&D

MelS
p-

LinReg
FCN

Peak HSP-S 0.468 0.426 0.393 0.454 0.308 0.398 0.343 0.311 0.283 0.332 0.224 0.289
Weeks HSP-S 0.420 0.349 0.397 0.417 0.277 0.362 0.313 0.260 0.287 0.312 0.204 0.266

LC HSP-S 0.352 0.304 0.269 0.368 0.322 0.333 0.241 0.207 0.182 0.252 0.218 0.227
LC HSP-L 0.334 0.268 0.204 0.342 0.272 - 0.226 0.181 0.136 0.232 0.184 -
PC HSP-S 0.342 0.315 0.284 0.362 0.320 0.344 0.234 0.215 0.192 0.247 0.217 0.234
PC HSP-L 0.361 0.286 0.231 0.370 0.291 - 0.241 0.193 0.155 0.252 0.197 -
HS HSP-S 0.433 0.447 0.352 0.440 0.365 0.376 0.298 0.308 0.239 0.302 0.248 0.256
HS HSP-L 0.403 0.416 0.346 0.430 0.320 - 0.274 0.284 0.233 0.294 0.217 -

V. RESULTS AND DISCUSSION

TABLE IV presents the results of all models on both
proposed datasets for the regression task. For charts data
predictions, linear regression provides the best results, whereas
for predicting popularity in terms of streaming counts, the
Wide and Deep network provides the best results (except for
the hit score prediction for the HSP-S dataset).

An interesting finding is, that the linear regression model
outperforms all other models on charts-based target measures
while the Wide and Deep model shows a good predictive
performance for the remaining targets. Similarly, the neural
network-based FCN model outperforms the simpler linear
regression-based model (MelSp-LinReg). Furthermore, com-
paring the results of the individual models for both datasets,
we observe that the linear regression model and the Wide
and Deep model perform better on the larger dataset when
predicting the play-counts as target. Here, Spearman’s ρ (and
Kendall’s τ ) increase from 0.342 (0.234) to 0.361 (0.241) and
0.362 (0.247) to 0.370 (0.252), respectively. We lead this back
to the fact that both datasets are different in terms of the
distribution of the respective target labels as depicted in Fig. 1.

Notably, models consuming the Mel-spectrograms do not
outperform the models using the Essentia features. To the best
of our knowledge, this is a novel finding but it should be noted,
that we were not able to gather results for the FCN model
on the larger HSP-L dataset as the current implementation
requires more than 256GB of memory during training. In
future work, empowered by our datasets, it will be interesting
to see how models consuming Mel-spectrograms compare to
more traditional approaches. Another interesting observation
is, that except for the random forest model, all models achieved
the highest correlation scores for the peak positions popularity
measure, followed by the hit-score popularity measure (look-
ing at the HSP-S) dataset.

The results of the binary classification task are shown in
TABLE V. Analogously to the regression task results, all
models reveal a better predictive performance on the smaller
HSP-S dataset. In the HSP-S dataset, 50% of the songs made
it to the Billboard Hot 100 charts. This leads to a different
label distribution as seen in Fig. 1, where the target measures

listener-count, play-count and hit-score in the HSP-S dataset
have a higher average and a larger interquartile-range. Further,
we observe, that the SVM model achieves the highest scores
with an accuracy of 0.715 and an F1 score 0.714 on the chart-
based classification, followed by the logistic regression model
with an accuracy of 0.713 and an F1 score of 0.712. The two
experiments based on the classes derived from peak position
and weeks in charts reveal the same accuracy in case of models
that do not use randomness and similar accuracy in case of
models that do use some kind of randomness. Hence, we only
state these results once (cf. the row“Charts”). These results can
be lead back to the fact that the hit vs. non-hit definition leads
to the same classes for both peak position and weeks. The only
difference between the two representations is the meaning of
both vector entries. If the first entry is one, it is a non-hit when
using weeks in charts and a hit when using the peak position.
Again, it can be seen that the Wide and Deep model achieves
the best results on streaming based targets except for listener-
count prediction on the HSP-S dataset, where it achieves the
second best results with and accuracy of 0.647.

In contrast to the regression based results, the neural net-
work based model is not able to outperform the simpler logistic
regression model that uses the mean and standard deviation of
the Mel-spectrograms as input (MelSp-LogReg). Again, we
were not able to gather results for the FCN model on the HSP-
L dataset as the model and dataset due to memory constraints
(256 GB of memory did not suffice).

To conclude, we see that the two datasets allow getting
valuable insights on the performance of various models to
tackle different kinds of popularity prediction tasks using
different kinds of features. Having both, Essentia features
and Mel-spectrogram features available for the same dataset
enables future work that compares models using either of
them. However, we still see a few limitations of our approach,
which we will elaborate on in the following. We acknowledge
that the presented results are biased towards western and
mainly commercial music due to the data sources utilized.
Further, the used definitions of success (Billboard charts and
last.fm streaming measures) introduce a platform bias.



TABLE V
EVALUATION RESULTS FOR THE BINARY CLASSIFICATION TASK (LC = LISTENER-COUNT, PC = PLAY-COUNT, HS = HIT-SCORE); BEST RESULT PER

DATASET, TARGET, AND METRIC IN BOLD.

Accuracy F1

Target Dataset LogReg

RndFores
t

SVM
W&D

MelS
p-

LogReg
FCN

LogReg

RndFores
t

SVM
W&D

MelS
p-

LogReg
FCN

Charts HSP-S 0.713 0.707 0.715 0.711 0.638 0.649 0.712 0.707 0.714 0.710 0.638 0.644

LC HSP-S 0.641 0.648 0.646 0.647 0.627 0.600 0.641 0.648 0.644 0.646 0.627 0.597
LC HSP-L 0.623 0.635 0.631 0.644 0.606 - 0.623 0.635 0.630 0.644 0.605 -
PC HSP-S 0.655 0.653 0.650 0.658 0.634 0.601 0.655 0.652 0.648 0.658 0.634 0.598
PC HSP-L 0.637 0.648 0.646 0.655 0.617 - 0.637 0.648 0.645 0.655 0.617 -
HS HSP-S 0.650 0.653 0.651 0.655 0.632 0.599 0.650 0.652 0.647 0.654 0.631 0.593
HS HSP-L 0.630 0.644 0.640 0.649 0.613 - 0.629 0.644 0.639 0.649 0.612 -

VI. CONCLUSION

We present two datasets (HSP-S and HSP-L) that pro-
vide Essentia’s high- and low-level audio features, and Mel-
spectrograms. As for popularity measures, we include listener-
and play-counts gathered from last.fm for both datasets, which
also allows computing Yang et al’s hit-score [3]. Furthermore,
HSP-S also provides charts data extracted from the Billboard
Hot 100. Our experiments show that both datasets allow
comparing different types of models on different popularity
prediction tasks. One crucial contribution is that our HSP-
L dataset allows to train models that require a large number
of training samples to increase their performance. We believe
that our datasets will be used for investigating and evaluating a
variety of music popularity prediction approaches; particularly
given that deep neural networks may benefit from large
numbers of training samples. In addition, it is now possible to
run multiple models using the same dataset utilizing different
sets and types of features stemming from multiple sources
to compare the results using the same songs. Further, such
experiments can take advantage of the different popularity
measures. This allows, for instance, investigating differences
among those measures and the approaches utilized.
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[18] D. Bogdanov, N. Wack, E. Gómez Gutiérrez, S. Gulati, H. Boyer,
O. Mayor, G. Roma Trepat, J. Salamon, J. R. Zapata González, X. Serra
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