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Abstract

Sequential recommendation models are systems that predict a user’s next action by lever-
aging the temporal order of their past interactions. Due to challenges like data sparsity,
noise, and evolving user interests, accurately modeling these sequences remains an un-
solved problem despite efforts using methods from Markov chains to recurrent neural
networks. The emergence of Graph Neural Networks (GNNs) prompted a new wave of
powerful models as researchers are pushed to capture more complex item relationships.

This thesis contributes a series of new graph-based approaches that directly tackle central
challenges in sequential recommendation. We design methods that integrate item features
into graph representations, improve efficiency and robustness under sparse and noisy
data, and capture both short-term dynamics and long-term repeated user intents through
advanced temporal modeling. In addition, we demonstrate the broader applicability of
these ideas in related domains such as music emotion recognition. Collectively, these
contributions establish new modeling principles that advance the accuracy, efficiency,
and interpretability of sequential recommendation systems.
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1. Introduction

1. Introduction

Personalization through recommender systems (RS) is a fundamental component of on-
line platforms, playing a key role in enhancing user satisfaction and engagement. These
systems aim to predict a user’s preference for items and improve the overall platform
experience by suggesting personalized content. Traditional recommendation approaches
can be broadly categorized into collaborative filtering and content-based filtering meth-
ods [38].

Collaborative filtering predicts user preferences based on the interests of similar users.
For example, if users A and B share interests in several items, it’s likely they will also
share preferences for other items [48, 51]. In contrast, content-based methods rely solely
on a user’s historical positive interactions to suggest similar items. For instance, if a
user frequently listens to a specific singer, a content-based system would likely recom-
mend other songs by the same artist [12, 39, 60]. These traditional approaches typically
model user-item interactions in a static fashion, ignoring the temporal structure of the
interaction history—such as the order of events or their timestamps. As a result, they pri-
marily capture a user’s general preference, rather than their current interest or evolving
behavior [65].

To address this limitation, sequential recommender systems (SRS) have emerged. Unlike
static models, SRS explicitly account for the temporal order of user interactions, modeling
how preferences evolve over time. These systems aim to recommend the next likely item
or a sequence of items, by capturing both short-term and long-term dependencies in user
behavior [65]. This allows them to better reflect a user’s current intent, leading to more
accurate and personalized recommendations.

Using SRS for recommendations has distinct advantages over general recommender sys-
tems. In real-world scenarios, interactions mostly happen successively and are not iso-
lated from each other. Figure 1.1 shows an example of a shopping spree of User A. In

iyl':ﬂ?

User A

Figure 1.1.: An example of SR: User A booked a flight, a hotel and rented a car. What
will be their next action?
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this scenario (the user is booking a holiday), each action depends on the prior ones and
so all interactions are sequentially dependent: As a next action User A might book tick-
ets for a tourist attraction. This example also shows that user-item interactions usually
happen in a certain sequential context. Additionally, the preference of the user and the
popularity of different items (e. g., music or clothing) are dynamic rather than static over
time due to personal development and trends [46]. These typical characteristics of online
interaction sequences are captured by SRS, but are hard to model with traditional RS.

Current state-of-the-art models in sequential recommendation (SR) comprise the usage
of Recurrent Neural Networks (RNNs) [32, 56|, Attention Mechanisms |26, 33| and Graph
Neural Networks (GNNs) [66, 69, 72] to model the interaction sequences. In our research,
we focus on GNN-approaches that construct global item graphs including all user-item
interactions and learn the sequential item embedding from its neighborhood in the graph
as opposed to methods that represent each user interaction sequence as a directed graph
of items. An example of such global item graph construction is given in Figure 1.2. In
this example the global item graph is constructed from four user interaction sequences
where each transition between items increases the weight of the corresponding directed
edge between those items (nodes) in the graph. Nevertheless, there are many possibilities
for how to integrate the GNN framework into the task of sequential recommendation [11,
69, 71, 76].

User Sessions
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Figure 1.2.: Example of global transition graph construction from observed user behavior

sequences. Edge weights correspond to the number of appearances of the item-item

transitions in the user sequences. Note that the edge weights usually get normalized
before used in training the GNN.
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1.1. Challenges and Research Questions

We identified following important gaps in graph-based SR that we aim to tackle in this
thesis:

(G1) Recent work in SR based on GNNs mostly ignore item features to improve the item
representation in the model [44].

(G2) Graph-based sequential models usually only consider the order in the interaction
sequence and fully neglect the dwelling time or the time difference between inter-
action sequences [5, 11, 31].

(G3) GNNs are prone to the over-smoothing effect, where node representations converge
to the same value over multiple layers, and also introduce additional computational
complexity [9, 27].

(G4) Datasets in SR potentially include noisy relations (e. g., user misclicks on an item)
and can introduce misleading information into the learning process. Filtering those
noisy relations on the other hand leads to an increased data sparsity, which is
already severely present in the original setting of SR [17, 71].

(G5) Current works in explainability of recommender systems rely on graph-based rep-
resentations [7]|, but struggle to provide intuitive explanations due to the lack of
feature-rich datasets.

To summarize, the core goals of our research comprise extending graph representations
with additional feature information as well as improving the graph construction and
learning process for informative item embeddings. Our research investigates and aim to
fill those described gaps in graph-based sequential recommendation. To fill the previously
identified research gaps, our research seeks to address the following research questions
and provide valuable contributions in this field:

RQ1: How can graphs effectively be applied to incorporate item feature information
in the setting of SR? Graphs can be used in different ways in SR: To model the inter-
action sequences as separate graphs or to generate global item and user graphs based on
the co-occurrences of item interactions, social networks, or knowledge graphs. Each node
in a graph can be initially described via item feature information as opposed to simple
one-hot encoding [44].

RQ2: How can graph-based methods tackle the noisy and sparse data problem? Cur-
rent graph-based methods [66, 69, 71] capture the topological structure of the sequence
graph and rely on multi-hop information aggregation in GNNs to exchange information
along edges. Consequently, graph-based models suffer from over-smoothing (node rep-
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resentations converge to the same value) if the number of layers is larger than three |9,
27]. Additionally, graph-based methods are prone to noisy item relations in the training
data and introduce high complexity for large item catalogs.

RQ3: How can we effectively incorporate temporal information in the graph struc-
ture? User interaction sequences are usually not only ordered sequentially but also con-
tain the timestamp per user-item interaction. From this information, we can infer the
dwelling time or periodicity of items which potentially increases the recommendation
performance. However, most of the current SRS ignore this valuable information and
only rely on the order of items in a sequence [26, 58].

RQ4: How can we incorporate item features to increase recommendation perfor-
mance and explainability? As described in RQ1: Feature Incorporation, each item can
be described by features based on its content or meta-data. These features can support
the learning process of the model by providing additional information per item. Addi-
tionally, known item features allow us to gain deeper knowledge about the insides of the
model and explain its recommendation more coherently |[1].

1.2. Outline

This thesis contains eight chapters, divided into two parts. Following this introduc-
tory chapter, Chapter 2 presents the related work and background on recommender sys-
tems and graph-based methods. Chapter 3 provides a summary of the papers included
in this dissertation. The chapters that present technical contributions are included in
Part II. This part includes Chapter 5 on unsupervised graph embeddings, Chapter 6 on
contrastive graph-based shortest path search, Chapter 7 on hypergraph-based temporal
modeling, and Chapter 8 on nuanced music emotion recognition. Finally, Chapter 4 in
Part I presents the concluding remarks.



2. Related Work and Background

2. Related Work and Background

In this chapter, we provide the necessary background and review related work relevant to
this doctoral thesis. We begin with an overview of core recommender systems, followed
by a focus on sequential recommendation and the role of graphs in recommender systems
research. We then discuss commonly used datasets and evaluation methodologies in this
domain. Throughout the chapter, we identify open challenges and potential research
gaps, aligning them with the overarching goal of this thesis: to advance the state of
graph-based sequential recommendation.

2.1. Recommender Systems

Because people’s online actions—such as what they bought or searched for—are stored
electronically, it’s possible to use this data to infer user preferences and predict future
interests. Recommender systems significantly influence the revenue of most online plat-
forms by delivering personalized suggestions and elevating long-tail items—items that
receive infrequent interactions but can lead to high user satisfaction [34].

Items
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Figure 2.1.: A user-item rating matrix with known ratings and a missing value 7, ; for
the active user a, which a recommender system aims to predict.

The input to a recommender system is typically a sparse matrix representing known user
preferences, as illustrated in Figure 2.1. Each cell r,; corresponds to the rating given
by user u to item ¢. In practice, users rate only a tiny fraction of the available items—
resulting in extremely sparse datasets, often with more than 99% of entries missing [28].
The task of a recommender system is to estimate these unknown ratings—such as r,; for
an active user a—and use the predicted values to recommend the most relevant items [38].
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In many modern applications, however, explicit ratings are rarely available, and the data
is instead binarized into implicit feedback signals (e.g., clicks, purchases, views), which
are interpreted as positive interactions versus non-interactions [24].

Approaches in recommender systems can be categorized broadly into four categories [38|.
Collaborative Filtering (CF) computes ratings according to past ratings of all users,
whereas content-based recommender systems favor items that are similar to other items
the user has rated high in the past or match with the user’s attributes. Knowledge-based
recommender systems use external knowledge and constraints instead of historical data to
create recommendations. Hybrid approaches try to combine the strength of various types
to perform more robustly in different kinds of settings [12, 63, 64]. In the following, we
briefly describe the three main types of recommender system approaches—collaborative
filtering, content-based, and knowledge-based—each of which employs a distinct strategy
for generating recommendations.

Collaborative Filtering Models These models make use of the collaborative power of
ratings provided by many users to tackle the task of recommendation. In collaborative
filtering the unspecified ratings for items are imputed through the often high correlation
of ratings between users and items. Take two users with similar tastes (observed by
similar ratings for the same items), then it is probable that an item, which is only rated
highly by one user, is also liked by the other one. There are two types of methods in
collaborative filtering. Memory-based methods predict ratings of user-item combinations
according to their neighborhood. The neighborhood can be either defined via users
that are similar to the target user (user-based CF) or via a set S of items, containing
items most similar to the target item (item-based CF) [51]. Model-based approaches
apply machine learning and data mining methods to learn the parameters of the model
within an optimization framework. Latent factor models like factorization machines are
an example of a model-based method that covers the issue of sparse rating matrices
implicitly [47]. However, collaborative filtering models generally require a large number
of ratings per user to provide reliable predictions and avoid overfitting. Consequently,
they are particularly affected by the cold-start problem, where insufficient user interaction
data makes it difficult to generate accurate recommendations for new users [12].

Content-based Recommender Systems In content-based recommender systems the
“content” of items (descriptive attributes) in combination with the ratings and buy-
ing behavior is used to generate predictions for recommendations. In the case where no
access to ratings of other users is available, CF methods cannot be applied, but item
descriptors can include additional information for recommendations [60]. Content-based
methods use item descriptors and according ratings as training data to generate a classi-
fication or regression model specifically per each user. This model is then used to predict
whether the user likes a previously unknown and unrated item or not, based on the
similarity to items from the training data [39]. Despite the advantage over CF methods
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in making recommendations without sufficient rating data, content-based methods lack
the ability to recommend non-obvious and completely new items, since the community
knowledge from similar users is not leveraged [12].

Knowledge-based Recommender Systems For items that are purchased infrequently
(e.g. real estate or automobiles) and thus lack sufficient user ratings, knowledge-based
recommender systems can be particularly useful. This is especially true in domains
where decisions are complex and depend on specific user requirements, constraints, or
expert knowledge that cannot be captured through historical interactions alone [64].
Knowledge-based methods facilitate so-called knowledge bases including rules and sim-
ilarity functions based on the user requirements to perform the recommendation task.
The usage of explicit user requirements results in greater control of the recommendation
process in comparison to CF and content-based methods [63]. Knowledge-based methods
can be distinguished into two types: Constraint-based recommender systems allow the
user to specify constraints on the desired item. In case-based recommender systems the
user specifies use cases which act as target or anchor points for the system [2].

Recommender systems can be applied across scenarios that differ in how they incorporate
temporal dynamics and patterns of user behavior, encompassing paradigms such as gen-
eral, sequential, session-based, context-aware, and social recommendation [46]. In what
follows, we focus on the first three—general, sequential, and session-based—as they are
most relevant to the scope of this dissertation.

General Recommendation This approach models users’ long-term preferences without
explicitly considering the chronological order of interactions. Each user—item interaction
is treated as an independent signal of preference, aiming to capture stable and enduring
interests. General recommenders are particularly effective in domains where tastes evolve
slowly, such as books or durable goods, and they form the backbone of many large-scale
commercial platforms [50].

Sequential Recommendation Sequential recommendation focuses on the temporal evo-
lution of preferences, leveraging the order and recency of interactions to anticipate future
choices. It assumes that recent actions are often more indicative of short-term intent,
making it well suited for fast-changing domains such as news, e-commerce, and music
streaming, where timeliness is critical [65]. A related setting is session-aware recommen-
dation, which combines the short-term behavior within the current session with a user’s
longer-term history, enabling the system to balance immediate intent with enduring pref-
erences [46].

Session-based Recommendation Session-based recommendation is a special case of se-
quential recommendation where the system predicts the next item based solely on the
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interactions within a short, anonymous session—without access to persistent user profiles.
This setting is common in contexts such as e-commerce sites without login requirements
or public kiosks, where only the immediate clickstream is available. Session-based meth-
ods must capture intent from limited data, making them particularly relevant in scenarios
with high privacy constraints or transient user interactions [22, 35].

2.2. Graph Neural Networks and Node Embeddings

Graph Neural Networks (GNNs) represent a powerful class of deep learning architectures
specifically designed to operate on graph-structured data, where traditional neural net-
works fall short due to the irregular and non-Euclidean nature of graphs [52, 70]. In such
data, there is no global coordinate system or uniform structure—nodes may have varying
numbers of neighbors and relationships are defined by arbitrary connectivity rather than
spatial proximity. Unlike conventional neural networks that process fixed-dimensional
vectors or regular grids, GNNs can naturally handle variable-sized graphs with com-
plex topological structures, making them invaluable for analyzing relational data across
diverse domains.

The fundamental principle underlying GNNs is the iterative aggregation and transfor-
mation of information from neighboring nodes, allowing each node to learn representa-
tions that capture both its local features and the broader structural context within the
graph [13]. The GNN message-passing framework [13] enables nodes to exchange and
integrate information with their neighbors, iteratively refining their representations to
capture the graph’s structural and relational context. The general differentiable message
passing is formulated as:

h§l+1) — 0 Z 9m <h£l),h§l)) ’ (2.1)
meM;

where hEl) e R represents the hidden state of node v; at the I-th layer, with d©) being
the dimensionality of the layer’s representation. The incoming messages, g (-,-), are
combined and processed through an activation function o(-), such as ReLU. M; is the
set of incoming messages for node v;, typically corresponding to the set of incoming edges.
The function g, (-, -) is often a neural network or a simple linear transformation [27]. This
transformation has proven effective in accumulating and encoding features from local,
structured neighborhoods [27, 61]|. Figure 2.2 illustrates the message-passing process
in a GNN, where each node aggregates information from its neighbors across multiple
layers, capturing both local and global structure.

GNNs have demonstrated remarkable success across numerous applications, including

social network analysis [27], molecular property prediction [13], knowledge graph com-
pletion [54], recommendation systems [20], and computer vision tasks involving scene

10
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Figure 2.2.: Tllustration of a molecule represented as a graph (left) and its hierarchical

message-passing process in a graph neural network across layers (right). Each node

aggregates information from its neighbors at increasing depths, capturing both local and
global structure (taken from [6]).

graphs [70]. The power of GNNs in sequential recommendation stems from their ability
to simultaneously capture multiple types of relationships within the same framework.
User interaction sequences can be modeled as session graphs where items are nodes
and transitions between consecutively clicked items form directed edges, enabling the
capture of item-to-item transition patterns [69]. Additionally, GNNs can incorporate
broader collaborative signals by constructing heterogeneous graphs that include user-
item interactions, item-item similarities, and temporal dependencies, thereby combining
the strengths of collaborative filtering with sequential modeling [8, 20].

The success of GNNs in capturing complex relational patterns depends critically on the
quality of the underlying node representations. This has motivated the development of
advanced graph embedding methods that can efficiently generate meaningful vector rep-
resentations while preserving essential structural information. Graph embedding aims
to generate low-dimensional vector representations of the graph’s nodes which preserve
topology and leverage node features. Non-deep learning methods are mainly based on
random walks to explore node neighborhoods [14, 45, 57|. With Graph Convolutional
Networks (GCNs) [27, 61], more sophisticated graph embedding methods than random-
walk-based approaches were introduced: To scale GCNs to large graphs, the layer sam-
pling algorithm [16] generates embeddings from a fixed node neighborhood. Current
state-of-the-art methods in self-supervised /semi-supervised learning of representations
rely on contrastive methods which base their loss on the difference between positive and
negative samples. Deep Graph Infomax (DGI) [62] contrasts node and graph encodings
by maximizing the mutual information between them. Hassani and Khasahmadi [18]
propose multi-view representation learning by contrasting first-order neighbor encodings

11
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with a general graph diffusion. Contrastive learning methods usually require a large
number of negative examples and are, therefore, not scalable for large graphs. The
approach by Thakoor et al. [59] learns by predicting substitute augmentations of the
input and circumventing the need of contrasting with negative samples. In GraFN [30]
a semi-supervised node classification framework leverages few labeled nodes to learn dis-
criminative node representations and ensures nodes from the same class are grouped
together.

The aforementioned methods can easily incorporate external item feature information as
initial node embeddings, but are rarely used in the SR domain. Additionally, none of the
existing methods appear to be specifically designed for the task of auto-tagging, which
aims to predict relevant labels or tags for a given item [67] and is becoming increasingly
important to generate or enrich recommendation datasets (cf. gaps (G1) and (G5)).

2.3. Graph-based Sequential Recommendation Models

As described in Section 2.1, recommender systems are suited to distinct scenarios, de-
pending on how they account for temporal dynamics and user behavior patterns. One
specific scenario is sequential recommendation, which focuses on the order of user in-
teractions over time. Sequential recommendation models aim to capture the temporal
dynamics of user preferences and interactions, which can lead to more accurate and per-
sonalized recommendations.The main challenge is to model the sequential nature of user
interactions, which can be represented as a sequence of items or events over time.

The initial phase of sequential recommendation focuses on discovering short-term item
representations and interaction patterns. Markov decision processes are used in early
works to model the interaction sequences. In FPMC [49], first-order Markov chains cap-
ture sequential patterns while matrix factorization models long-term user preferences.
Also, convolutional neural networks (CNNs) have been found to be useful, where items
are seen as images and short-term sequential patterns are learned via convolutional fil-
ters [58]. Xu et al. [73] combine CNNs with long-short-term memory to extract additional
complex long-term dependencies. In HGN [36], a feature and instance gating mechanism
is used to capture long- and short-term user interests. Other studies apply the attention
mechanism to obtain and fuse different levels of interaction information [55, 77].

Self-attention and Transformer-based architectures are widely used for sequential recom-
mendation models. SASRec [26] applies the self-attention mechanism to identify relevant
interactions from the user’s history. Others use custom Transformer models to provide
more personalized recommendations [10, 68]. In FDSA [80], heterogeneous features of
items are integrated via feature sequences, and self-attention is applied to jointly model
item and feature transition patterns. S3-Rec [82] utilizes self-supervised learning to en-
hance the item representations via pre-training methods.
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Figure 2.3.: An example of a session graph and the connection matrix Ag (taken

from [69]).

Recently graph-based approaches have gained popularity in sequential recommendation,
leveraging the power of GNNs to capture complex relationships and dependencies within
user-item interaction graphs. These methods can effectively model both short-term and
long-term user preferences by constructing graphs that represent user interactions as
nodes and edges. Hsu and Li [23] extract a local subgraph from a user-item pair and ap-
ply self-attention to encode long-term and short-term temporal patterns. MA-GNN [37]
captures the item contextual information within a short-term period with a graph neural
network and utilizes a shared memory network to model long-range dependencies. Work
in [11] utilizes temporal graph representations to model continuous-time recommenda-
tion, where user and item embeddings are generated for any unseen future timestamps.
Zhang et al. [81] extract augmented sequences representations from an item transition
graph for a contrastive learning objective.

In session-based recommendation (SBR), a subtask of sequential recommendation, user
profiles, and long-term interaction histories are no longer available. Most recent works in
SBR are based on GNNs: As the first to introduce the concept of representing sessions
as graphs, SR-GNN [69] models each session as a directed, unweighted graph (as shown
in Figure 2.3) and applies a gating mechanism to generate session representations. This
work is extended by a self-attention mechanism in GCSAN [72] to effectively capture long-
range dependencies. Incorporating collaborative knowledge into GNN-based methods
leads to a new line of research. GCE-GNN [66] learns item embeddings on a session level
as well as on a global level and uses a soft-attention mechanism to fuse the learned item
representations. Chen and Wong [9] tackle the long-range dependency (over-smoothing)

13



2. Related Work and Background

problem of session graphs by introducing a lossless encoding scheme and a shortcut graph
attention layer. Xia et al. [71]| introduce a dual-channel hypergraph to capture beyond-
pairwise relations and apply self-supervised learning to maximize the mutual information
between both session representations.

Recent research in the field of graph-based sequential recommendation has several lim-
itations and room for improvement. Unlike earlier approaches that attempted to clean
noisy data, there is little research on developing GNNs that can learn from noisy data
without compromising performance (cf. gap (G4)). Additionally, there has been a recent
push towards using more computationally complex GNN models that can better capture
the structure and relationships within graphs. However, this increased complexity comes
at the cost of greater computational resources (cf. gap (G3)). Another area of focus has
been on addressing data sparsity, particularly in the context of contrastive learning (CL).
Although CL has shown promise in learning representations from sparse data, there is
still considerable room for improvement in this area (cf. gap (G4)).

2.4. Datasets

Sequential recommendation models are evaluated under the assumption that the under-
lying datasets exhibit meaningful sequential patterns. However, this assumption is often
violated in practice, leading to misleading conclusions about model performance. Prior
work has highlighted serious shortcomings in commonly used datasets. For example,
Hidasi and Czapp [21] identify a dataset-task mismatch as a prevalent flaw, emphasizing
that datasets such as MovieLens, Steam, Amazon (Beauty), and Yelp—while popular—
contain weak or even artificial sequential signals due to issues like coarse timestamp gran-
ularity and presorted user histories. Similarly, others show through controlled shuffling
experiments that these datasets exhibit minimal performance degradation, indicating
their inadequacy for evaluating sequential recommenders [28].

Despite this, these datasets remain widely used due to legacy benchmarking and ease
of access [4]. Our work explicitly avoids such flawed datasets and instead uses datasets
with empirically verified sequential structure. We distinguish between two main types of
datasets used:

Session-based Recommendation (SBR) These datasets capture short-term interactions
within bounded sessions. Examples include Diginetica!, Tmall?, RetailRocket?, Last.fm?,

"https://cikm2016.cs. iupui.edu/cikm- cup/
2https://tianchi.aliyun.com/dataset/dataDetail?datald=42
3https://www.kaggle.com/retailrocket/ecommerce-dataset
‘http://ocelma.net/MusicRecommendationDataset/lastfm-1K.html
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Music4All (Onion)®, and Gowalla®. Session-based datasets often contain high-frequency
temporal signals and are thus well-suited for next-click prediction tasks. Notably, Dig-
inetica and RetailRocket, show weaker sequential signals than expected, however, their
session granularity and event specificity still make them preferable for SBR evalua-
tion [28].

Sequential Recommendation (SR) These datasets contain longer, user-centric se-
quences with richer temporal evolution, better suited for tasks involving long-term prefer-
ence modeling. We include Ta-Feng”, MegaMarket (SMM)®, Delivery Hero (DHRD)? [3],
and NowPlaying [79]. These datasets exhibit strong sequential dependencies as confirmed
through both rule-mining and model-based degradation metrics [28]. For example, Mega-~
Market and NowPlaying demonstrate substantial drops in performance under sequence
shuffling and yield low Jaccard similarity between original and perturbed top-K recom-
mendation lists, validating their utility for sequence modeling.

Table 2.1.: Statistics of the datasets used in this thesis after preprocessing.

Dataset #Users/Sessions #Items Avg. Seq. Length
Session-based Recommendation (SBR)
RetailRocket 36,968 20,228 5.43
Diginetica 205,698 44,527 4.85
Tmall 377.166 40,728 6.69
Gowalla 830,893 29.510 3.85
Music4All (Onion) 601,858 80,471 7.70
Last.fm 3,510,163 38,615 11.78
Sequential Recommendation (SR)
NowPlaying 11,310 15,905 86.39
MegaMarket (SMM) 12,098 22,167 71.97
Ta-Feng 26,162 15,642 29.99
Delivery Hero (DHRD) 42,774 20,883 12.30

In contrast to prior work using ill-suited datasets, our evaluation strategy aligns datasets
with appropriate recommendation tasks, minimizing dataset-task mismatch and improv-
ing the reliability of our findings. By selecting datasets with demonstrable sequential
structure, we aim to ensure that improvements in model performance genuinely reflect
the model’s ability to learn temporal patterns rather than artifacts of flawed bench-
marks.

"https://zenodo.org/records/15394646
Shttps://snap.stanford.edu/data/loc-gowalla.html
"https://www.kaggle.com/datasets/chiranjivdas09/ta-feng-grocery-dataset
8https://disk.yandex.ru/d/fSEBIQYZusAAuw/datasets/data_smm
“https://github.com/deliveryhero/dh-reco-dataset
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2.5. Evaluation and Metrics

We adopt a standard offline evaluation protocol suitable for sequential recommendation.
Each user’s interaction sequence is split chronologically, and the model is evaluated on its
ability to predict the next item. Specifically, we use a leave-one-out strategy: for each
user in the test set, the last interaction is withheld as ground truth, and the preceding
sequence is used as input as shown in Figure 2.4. This reflects the next-item prediction
task while avoiding information leakage.

U1 V2 V3 U1 V4 V2 Vs Vg
——@ ® ® ® ® @ time
~ ~
Training Validation Test

® [istorical interactions
Validation interaction (penultimate)

e Test interaction (most recent)

Figure 2.4.: Leave-One-Out splitting strategy.

To ensure data quality and mitigate the impact of extreme sparsity, we apply k-core
filtering, which involves iteratively removing users and items with fewer than & inter-
actions until all remaining users and items satisfy the threshold. This preprocessing
step is widely adopted in recommender systems research to stabilize training and eval-
uation [22, 26, 46]. The main motivation behind k-core filtering is twofold. First, users
with very few interactions provide limited signal for learning personalized preferences
and can introduce noise into the model. Second, items with low interaction counts may
lack sufficient co-occurrence patterns, which weakens the collaborative signal needed for
both traditional and deep learning-based recommenders [78].

2.5.1. Metrics

We evaluate models using standard ranking-based metrics that capture different aspects
of recommendation quality:

e Hit Rate (HR@k): Measures whether the ground-truth item for a user u, denoted
as item,,, appears in the top-k predicted items. Formally:

1

HRQk = —
U

Z Ifitem, € R

uelU

where U is the set of users, R¥ is the top-k recommendation list for user u, and 1|
is the indicator function that returns 1 if the condition is true, and 0 otherwise.
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e Precision@k (P@k): Measures the proportion of recommended items in the top-k
list that are actually relevant. For a set of users U, it is defined as:

» 1 |RE N R,
Precision@k = — —u
P

where R, is the set of ground-truth relevant items for user u. In the common
leave-one-out evaluation used for sequential recommendation, |R,| = 1.

e Normalized Discounted Cumulative Gain (NDCG®@k): Takes into account
the rank of the ground-truth item, giving higher scores when it appears near the

top of the list:
1

1
NDCGQ@k = —
|U| % log, (rank,, + 1)

where rank,, is the position of the ground-truth item in Rﬁ If the item does not
appear in the top-k, the contribution is zero.

e Mean Reciprocal Rank (MRR@k): Measures the average reciprocal rank of
the first relevant item in the predicted list:

1 1
MRRQk = — —
\U| z;U rank,,

where rank,, is the position of the ground-truth item in Rfj if present; otherwise,
the term is zero.

These metrics are computed using full-ranking evaluation (i.e., ranking all items), unless
otherwise specified. We avoid negative item sampling during testing, as it introduces
bias and can distort relative model performance [21, 29].

2.5.2. Limitations of Offline Evaluation

Offline evaluation offers convenience and reproducibility, but it has notable limitations
that hinder its ability to reflect real-world performance accurately. A core issue is its re-
liance on static user preferences, while in reality, user interests evolve over time [53|. This
mismatch can lead to evaluations that don’t generalize well to future behavior. Another
major drawback is the lack of a feedback loop. Offline metrics are computed on historical
data that does not account for how recommendations influence user behavior—leading to
exposure bias and a disconnect between offline and online performance [25]. Offline met-
rics like NDCG or Hit Rate also fail to capture broader goals such as diversity or long-term
user satisfaction |78]. While offline evaluation remains a necessary benchmark, it should
be complemented with online methods such as A /B testing or counterfactual estimators
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to assess real-world impact. However, A /B testing is often costly, time-consuming, or im-
practical, due to restricted access to production systems or the need for large user bases
to achieve statistical significance [21]. Overall, while offline evaluation does not fully
reflect real-world deployment, it remains a valuable and necessary tool for benchmarking
sequential recommender systems under controlled conditions.
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3. Overview of Contributions

Throughout my doctoral studies, I have contributed to eleven research papers as an
author or co-author, with four of these publications forming integral components of
this dissertation. To provide readers with a comprehensive understanding of my research
trajectory and scholarly contributions, I present detailed summaries of each paper below,
explicitly outlining my individual role in each work and demonstrating how they address
the core research questions that guide this dissertation.

For each publication, I include relevant contextual information such as conference ac-
ceptance rates and CORE rankings' where available, which serve as indicators of the
competitive nature and quality standards of the venues where this work was published.

To maintain transparency regarding my scholarly contributions, I have systematically
categorized my involvement in each paper according to three distinct dimensions: (1) the
initial conception and development of the research idea, including problem identification
and methodological approach; (2) the practical execution of the research work, encom-
passing implementation, experimentation, and data analysis; and (3) the composition and
refinement of the written manuscript, including literature review, results presentation,
and discussion of findings.

3.1. Unsupervised Graph Embeddings for Session-based
Recommendation with Item Features

[C1] A. Peintner, M. Moscati, E. Parada-Cabaleiro, M. Schedl, and E. Zangerle. Un-
supervised graph embeddings for session-based recommendation with item fea-

tures. In CARS: Workshop on Context-Aware Recommender Systems (RecSys
'22), 2022

(RQl: Feature Incorporation) (RQ4: Features & Explainability)

Abstract In session-based recommender systems, predictions are based on the user’s pre-
ceding behavior in the session. State-of-the-art sequential recommendation algorithms
either use graph neural networks to model sessions in a graph or leverage the similarity
of sessions by exploiting item features. In this paper, we combine these two approaches
and propose a novel method, Graph Convolutional Network Extension (GCNext), which
incorporates item features directly into the graph representation via graph convolutional

"http://portal.core.edu.au/conf-ranks/
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networks. GCNext creates a feature-rich item co-occurrence graph and learns the corre-
sponding item embeddings in an unsupervised manner. We show on three datasets that
integrating GCNext into sequential recommendation algorithms significantly boosts the
performance of nearest—neighbor methods as well as neural network models. Our flexible
extension is easy to incorporate in state-of-the-art methods and increases the MRR@20
by up to 12.79%.

Contribution (60%, 70%, 80%) This paper was my first publication and the first one
to introduce the idea of using graph convolutional networks to incorporate item features
into session-based recommendation. I was primarily responsible for developing the core
algorithmic framework and conducting the comprehensive experimental evaluation across
multiple datasets. My involvement in the writing process was substantial, particularly
in crafting the technical methodology sections and results analysis, while collaborating
closely with co-authors on the literature review and discussion sections.

3.2. Efficient Session-based Recommendation with Contrastive
Graph-based Shortest Path Search

[C2] A. Peintner, A. R. Mohammadi, and E. Zangerle. SPARE: shortest path global
item relations for efficient session-based recommendation. In Proceedings of the
17th ACM Conference on Recommender Systems, RecSys 2023, pages 58—69.
ACM, 2023. DOI: 10.1145/3604915.3608768

CORE Rank: A
Acceptance Rate: 17%

[C3] A. Peintner, A. R. Mohammadi, and E. Zangerle. Efficient session-based rec-
ommendation with contrastive graph-based shortest path search. ACM Trans-
actions on Recommender Systems, 3(4), Apr. 2025. DOI: 10.1145/3701764

(RQ2: Noisy & Sparse Data)

Note The second paper (C3) is an extended version of the first (C2). In the remainder
of this work, we refer to and use the extended version, as it provides more comprehensive
experiments and deeper insights.

Abstract Session-based recommendation aims to predict the next item based on a set of
anonymous sessions. Capturing user intent from a short interaction sequence imposes a
variety of challenges since no user profiles are available and interaction data is naturally
sparse. Recent approaches relying on graph neural networks (GNNs) for session-based
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recommendation use global item relations to explore collaborative information from dif-
ferent sessions. These methods capture the topological structure of the graph and rely
on multi-hop information aggregation in GNNs to exchange information along edges.
Consequently, graph-based models suffer from noisy item relations in the training data
and introduce high complexity for large item catalogs. We propose to explicitly model
the multi-hop information aggregation mechanism over multiple layers via shortest-path
edges based on knowledge from the sequential recommendation domain. Our approach
does not require multiple layers to exchange information and ignores unreliable item-
item relations. Furthermore, to address inherent data sparsity, we are the first to apply
supervised contrastive learning by mining data-driven positive and hard negative item
samples from the training data. Extensive experiments on four different datasets show
that the proposed approach outperforms almost all of the state-of-the-art methods.

Contribution (90%, 80%, 60%) This contribution is reflected in both the RecSys 2023
conference paper and its extended version published in ACM TORS 2025.

In this work, which addresses the challenges of noisy and sparse data in session-based
recommendation, I led the development of the core methodology by proposing the com-
bination of shortest-path edge modeling with supervised contrastive learning. I was
primarily responsible for implementing the proposed method and carrying out an exten-
sive experimental evaluation across four benchmark datasets. My writing contributions
focused on the methodology and experimental sections, while I collaborated closely with
co-authors on the theoretical background and related work. The core ideas were first in-
troduced in our RecSys 2023 paper and subsequently extended and refined in the TORS
2025 journal version.

3.3. Hypergraph-based Temporal Modelling of Repeated Intent
for Sequential Recommendation

[C4] A. Peintner, A. R. Mohammadi, M. Miiller, and E. Zangerle. Hypergraph-based

temporal modelling of repeated intent for sequential recommendation. In Pro-

ceedings of the ACM on Web Conference 2025, WWW 2025, pages 3809-3818.
ACM, 2025. DOI: 10.1145/3696410.3714896

CORE Rank: A*
Acceptance Rate: 19.3%

[RQS: Temporal Information)

Abstract In sequential recommendation scenarios, user intent is a key driver of consump-
tion behavior. However, consumption intents are usually latent and hence, difficult to
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leverage for recommender systems. Additionally, intents can be of repeated nature (e. g.,
yearly shopping for christmas gifts or buying a new phone), which has not been exploited
by previous approaches. To navigate these impediments we propose the HyperHawkes
model which models user sessions via hypergraphs and extracts user intents via soft clus-
tering. We use Hawkes Processes to model the temporal dynamics of intents, namely
repeated consumption patterns and long-term interests of users. For short-term interest
adaption, which is more fine-grained than intent-level modeling, we use a multi-level
attention mixture network and fuse long-term and short-term signals. We use the gener-
alized expectation-maximization (EM) framework for training the model by alternating
between intent representation learning and optimizing parameters of the long- and short-
term modules. Extensive experiments on four real-world datasets from different domains
show that HyperHawkes significantly outperforms existing state-of-the-art methods.

Contribution (80%, 90%, 60%) This paper on temporal information modeling through
the HyperHawkes model represents one of my most significant contributions to the field.
I conceived the core research idea of combining hypergraphs with Hawkes processes for
modeling temporal dynamics in user behavior. I led the implementation of the complex
model architecture, including the generalized EM framework for training, and conducted
comprehensive experiments across four real-world datasets. I was the primary author of
the paper, taking responsibility for most sections while incorporating valuable feedback
and contributions from co-authors.

3.4. Nuanced Music Emotion Recognition via a
Semi-Supervised Multi-Relational Graph Neural Network

[C5]  A. Peintner, M. Moscati, Y. Kinoshita, R. Vogl, P. Knees, M. Schedl, H. Strauss,
M. Zentner, and E. Zangerle. Nuanced music emotion recognition via a semi-
supervised multi-relational graph neural network. Transactions of the Interna-
tional Society for Music Information Retrieval, 8(1):140-153, 2025. DOIL: 10.
5334/tismir.235

(RQl: Feature Incorporationj (RQ4: Features & Explainability)

Abstract Music Emotion Recognition (MER) seeks to understand the complex emotional
landscapes elicited by music, acknowledging music’s profound social and psychological
roles beyond traditional tasks such as genre classification or content similarity. MER
relies heavily on high-quality emotional annotations, which provide the foundation for
training models to recognize emotions. However, collecting these annotations is both
complex and costly, leading to limited availability of large-scale datasets for MER. Re-
cent works in MER for automatically extracting emotion aim to learn track representa-
tions in a supervised manner. However, these approaches mainly utilize simpler emotion
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models due to limited datasets or the lack of necessity of sophisticated emotion mod-
els and ignore hidden inter-track relations, which are beneficial for a semi-supervised
learning setting. This paper proposes a novel approach to MER by constructing a multi-
relational graph that encapsulates different facets of music. We leverage Graph Neural
Networks (GNNs) to model intricate inter-track relationships and capture structurally
induced representations from user data, such as listening histories, genres and tags. Our
model, the Semi-supervised Multi-relational Graph Neural Network for Emotion Recogni-
tion (SRGNN-Emo), innovates by combining graph-based modeling with semi-supervised
learning, using rich user data to extract nuanced emotional profiles from music tracks.
Through extensive experimentation, SRGNN-Emo achieves significant improvements in
R? and RMSE metrics for predicting the intensity of nine continuous emotions (GEMS),
demonstrating its superior capability in capturing and predicting complex emotional ex-
pressions in music.

Contribution (80%, 70%, 40%) In this music emotion recognition paper, I led the
development of SRGNN-Emo, including its conceptual design and full implementation.
I carried out the experiments for emotion prediction tasks and designed the evaluation
pipeline. I authored the technical methodology and experimental design sections. The
co-authors contributed domain knowledge in music information retrieval and emotional
modeling, which informed the interpretation of results and theoretical framing.

3.5. Not-included Contributions

The following enumeration presents additional research articles that were developed dur-
ing the course of this doctoral work, which have either been published or are presently
under peer review. While these contributions represent valuable scholarly output from
my doctoral research period, they address topics that fall outside the primary scope and
thematic focus of this dissertation. Consequently, these works are not incorporated into
the main body of this thesis, though they demonstrate the breadth of research activities
undertaken during my doctoral studies.

[C6] L. Benning, A. Peintner, G. Finkenzeller, and L. Peintner. Automated spheroid
generation, drug application and efficacy screening using a deep learning classi-
fication: a feasibility study. Scientific Reports, 10(1):1-11, 2020

[C7] L. Benning, A. Peintner, and L. Peintner. Advances in and the applicability of
machine learning-based screening and early detection approaches for cancer: a
primer. Cancers, 14(3):623, 2022

[C8] A. Peintner. Sequential recommendation models: A graph-based perspective.
In Proceedings of the 17th ACM Conference on Recommender Systems, RecSys
2023, pages 1295-1299. ACM, 2023
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[C9]

[C10]

[C11]

M. Moscati, H. Straufs, P.-O. Jacobsen, A. Peintner, E. Zangerle, M. Zentner,
and M. Schedl. Emotion-based music recommendation from quality annotations
and large-scale user-generated tags. In Proceedings of the 32nd ACM Conference
on User Modeling, Adaptation and Personalization, pages 159-164, 2024

A. R. Mohammadi, A. Peintner, M. Miiller, and E. Zangerle. Are we explaining
the same recommenders? Incorporating recommender performance for evaluat-
ing explainers. In Proceedings of the 18th ACM Conference on Recommender
Systems, RecSys 2024, pages 1113-1118. ACM, 2024

S. Ewerz and A. Peintner. Unternehmensleitung in der Aktiengesellschaft und
kiinstliche Intelligenz. Wirtschaftsrechtliche Bldtter: WBL; Zeitschrift fir dster-
reichisches und europdisches Wirtschaftsrecht:697-710, 2024
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4. Conclusion

This dissertation embarked on an investigation into the challenges and opportunities
within graph-based sequential recommendation. The primary objective was to extend the
capabilities of sequential recommender systems by developing novel graph-based method-
ologies that address critical gaps in the literature. Our research was guided by four central
questions focused on incorporating item features (RQ1: Feature Incorporation), tackling
data sparsity and noise (RQ2: Noisy & Sparse Data), modeling complex temporal dynam-
ics (RQ3: Temporal Information), and enhancing recommendation explainability (RQ4:
Features & Explainability). Through a series of publications, we have introduced new
models and frameworks that provide substantial answers to these questions, pushing the
boundaries of what is possible in sequential recommendation. This concluding chapter
summarizes the key contributions of this thesis, discusses the inherent limitations of the
proposed methods, and outlines promising directions for future research.

4.1. Summary of Contributions

The research presented in this dissertation advanced the state-of-the-art through several
key methodological contributions, each aligned with our guiding research questions.

In response to RQ1: Feature Incorporation and RQ4: Features & Explainability, our work
demonstrated that item features can be powerfully integrated into sequential models
by leveraging the structural properties of graphs. We established that learning item
embeddings from a global co-occurrence graph in an unsupervised manner, where nodes
are enriched with feature information, provides a robust initialization for downstream
sequential models. This approach significantly boosts performance by encoding both
collaborative signals and content-based semantics. We further extended this principle
to more complex, multi-relational graph structures, showing that by modeling diverse
relationships (e.g., shared genres, user sessions, tags) in a semi-supervised framework,
we can effectively predict nuanced, multi-dimensional attributes such as a music track’s
emotional profile. This underscores the versatility of graph-based feature integration for
both core recommendation and related, feature-dependent tasks.

To contend with the pervasive issues of noise and data sparsity (RQ2: Noisy & Sparse
Data), we proposed a novel graph construction paradigm. We showed that by pruning
a global item graph based on shortest-path distances, it is possible to filter out noisy,
low-support relations while explicitly creating shortcut connections that model multi-hop
dependencies. This strategy not only improves the robustness of the learned represen-
tations but also yields a more efficient model architecture that avoids the complexities
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of deep GNNs. To mitigate the risk of increased data sparsity from this pruning, we
introduced a supervised contrastive learning objective. By mining informative positive
and hard-negative samples directly from the training data, this component effectively re-
fines item embeddings and enhances the model’s ability to discriminate between closely
related items.

Addressing the challenge of modeling complex temporal dynamics (RQ3: Temporal In-
formation), this thesis introduced a framework that moves beyond item-level sequences
to capture the temporal evolution of latent user intents. We demonstrated that by
representing user sessions as hyperedges, we can capture higher-order item relationships
indicative of a common intent. These latent intents, extracted via soft clustering, become
the primary unit for temporal analysis. By applying temporal point processes, specifi-
cally Hawkes Processes [19], we modeled the self-exciting nature of these intents, thereby
capturing sophisticated patterns such as repeat consumption and periodicity. This long-
term, intent-driven perspective, when fused with a more traditional short-term attention
mechanism, provides a more comprehensive and accurate model of user behavior over
time.

4.2. Limitations and Future Directions

Despite the substantial contributions to the field, the methods proposed in this disserta-
tion have several limitations. These challenges, however, pave the way for several exciting
avenues for future research in graph-based sequential recommendation.

A significant limitation of the proposed methods is their reliance on static, offline graph
representations. The initial graph construction, particularly processes like all-pairs
shortest-path search or frequent itemset mining, can be a computational bottleneck at
scale. More importantly, these static graphs do not reflect the dynamic nature of real-
world recommender systems where new items, users, and interactions are constantly
streaming in [15]. A critical next step is to adapt these frameworks for dynamic environ-
ments. This involves developing algorithms for efficient, real-time updates to the graph
structure and embeddings as new data arrives. Techniques from continual learning and
incremental graph processing will be instrumental in creating models that can evolve
with user behavior and item catalogs without periodic, costly retraining [74].

While RQ4: Features & Explainability touched upon explainability, the primary focus
of our contributions was on leveraging features to improve predictive accuracy. The
inherent “black-box” nature of the GNNs used persists. The models can show that
certain items are related but struggle to provide intuitive, human-understandable reasons
why a specific recommendation was made [1, 7]. Building truly explainable graph-based
recommender systems is a major challenge for future work. This research could focus on
designing inherently interpretable GNN architectures or developing post-hoc explanation
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techniques. A promising direction is to identify and present the critical subgraphs or
interaction paths most influential in a recommendation, effectively translating the model’s
complex reasoning into a narrative that users can trust and understand [75].

In conclusion, this dissertation has demonstrated the immense potential of viewing se-
quential recommendation through a graph-based lens. By developing novel methods for
feature integration, noise reduction, and temporal modeling, we have made significant
strides in the field. The path forward is rich with challenges and opportunities, and it
is our hope that the work presented here will serve as a solid foundation for the next
generation of intelligent, fair, and explainable recommender systems.

27






Bibliography

Bibliography

1]

2]
13l

4]

[5]

[6]

7]

8]

19]

[10]

[11]

D. Afchar, A. Melchiorre, M. Schedl, R. Hennequin, E. Epure, and M. Moussallam.
Explainability in music recommender systems. AI Magazine, 43(2):190-208, 2022.

C. C. Aggarwal. Recommender Systems - The Textbook. Springer, 2016.

Y. Assylbekov, R. Bali, L. Bovard, and C. Klaue. Delivery hero recommendation
dataset: A novel dataset for benchmarking recommendation algorithms. In Pro-
ceedings of the 17th ACM Conference on Recommender Systems, RecSys 2023,
pages 1042-1044. ACM, 2023.

C. Bauer, E. Zangerle, and A. Said. Exploring the landscape of recommender sys-
tems evaluation: practices and perspectives. ACM Transactions on Recommender
Systems, 2(1):1-31, 2024.

V. Bogina, T. Kuflik, D. Jannach, M. Bielikova, M. Kompan, and C. Trattner.
Considering temporal aspects in recommender systems: a survey. User Model. User
Adapt. Interact., 33(1):81-119, 2023.

M. Bronstein. Do we need deep graph neural networks? Medium, July 2020. URL:
https : //medium . com/data - science /do - we - need - deep - graph - neural -
networks-be62d3ecbcbh9.

H. Chen, Y. Li, X. Sun, G. Xu, and H. Yin. Temporal meta-path guided explainable
recommendation. In WSDM ’21, The Fourteenth ACM International Conference on
Web Search and Data Mining, pages 1056-1064. ACM, 2021.

L. Chen, L. Wu, R. Hong, K. Zhang, and M. Wang. Revisiting graph based collab-
orative filtering: a linear residual graph convolutional network approach. In Pro-
ceedings of the AAAI conference on artificial intelligence, volume 34 of number 01,
pages 27-34, 2020.

T. Chen and R. C. Wong. Handling information loss of graph neural networks for
session-based recommendation. In KDD ’20: The 26th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pages 1172-1180. ACM, 2020.

G. de Souza Pereira Moreira, S. Rabhi, J. M. Lee, R. Ak, and E. Oldridge. Trans-
formersdrec: bridging the gap between NLP and sequential / session-based recom-

mendation. In RecSys '21: Fifteenth ACM Conference on Recommender Systems,
pages 143-153. ACM, 2021.

Z. Fan, Z. Liu, J. Zhang, Y. Xiong, L. Zheng, and P. S. Yu. Continuous-time se-
quential recommendation with temporal graph collaborative transformer. In CIKM
"21: The 30th ACM International Conference on Information and Knowledge Man-
agement, pages 433-442. ACM, 2021.

29


https://medium.com/data-science/do-we-need-deep-graph-neural-networks-be62d3ec5c59
https://medium.com/data-science/do-we-need-deep-graph-neural-networks-be62d3ec5c59

Bibliography

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

C. Ganhor, M. Moscati, A. Hausberger, S. Nawaz, and M. Schedl. A multimodal
single-branch embedding network for recommendation in cold-start and missing
modality scenarios. In Proceedings of the 18th ACM Conference on Recommender
Systems, RecSys 2024, pages 380—-390. ACM, 2024.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message
passing for quantum chemistry. In International conference on machine learning,
pages 1263-1272. PMLR, 2017.

A. Grover and J. Leskovec. Node2vec: scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining 2016, pages 855-864. ACM, 2016.

L. Guo, H. Yin, Q. Wang, T. Chen, A. Zhou, and N. Q. V. Hung. Streaming session-
based recommendation. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD 2019, pages 1569-1577.
ACM, 2019.

W. L. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on
large graphs. In Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, pages 1024-1034,
2017.

Q. Han, C. Zhang, R. Chen, R. Lai, H. Song, and L. Li. Multi-faceted global item
relation learning for session-based recommendation. In SIGIR ’22: The 45th In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 1705-1715. ACM, 2022.

K. Hassani and A. H. K. Ahmadi. Contrastive multi-view representation learning on
graphs. In Proceedings of the 37th International Conference on Machine Learning,
ICML 2020, volume 119 of Proceedings of Machine Learning Research, pages 4116—
4126. PMLR, 2020.

A. G. Hawkes. Spectra of some self-exciting and mutually exciting point processes.
Biometrika, 58(1):83-90, 1971.

X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang. Lightgcn: simplifying
and powering graph convolution network for recommendation. In Proceedings of

the 43rd International ACM SIGIR conference on research and development in
Information Retrieval, SIGIR 2020, pages 639-648. ACM, 2020.

B. Hidasi and A. T. Czapp. Widespread flaws in offline evaluation of recommender
systems. In Proceedings of the 17th ACM Conference on Recommender Systems,
RecSys 2023, pages 848-855. ACM, 2023.

B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk. Session-based recommenda-
tions with recurrent neural networks. In 4th International Conference on Learning
Representations, ICLR 2016, Conference Track Proceedings, 2016.

30



Bibliography

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

C. Hsu and C. Li. Retagnn: relational temporal attentive graph neural networks
for holistic sequential recommendation. In WWW ’21: The Web Conference 2021,
pages 2968-2979. ACM, 2021.

Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback
datasets. In Proceedings of the 8th IEEE International Conference on Data Mining
(ICDM 2008), pages 263-272. IEEE Computer Society, 2008.

T. Joachims, A. Swaminathan, and T. Schnabel. Unbiased learning-to-rank with
biased feedback. In Proceedings of the tenth ACM international conference on web
search and data mining, pages 781-789, 2017.

W. Kang and J. J. McAuley. Self-attentive sequential recommendation. In IEEFE
International Conference on Data Mining, ICDM 2018, pages 197-206. IEEE Com-
puter Society, 2018.

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolu-
tional networks. In 5th International Conference on Learning Representations,
ICLR 2017. OpenReview.net, 2017.

A. Klenitskiy, A. Volodkevich, A. Pembek, and A. Vasilev. Does it look sequential?
an analysis of datasets for evaluation of sequential recommendations. In Proceedings
of the 18th ACM Conference on Recommender Systems, RecSys 24, pages 1067—
1072. ACM, 2024.

W. Krichene and S. Rendle. On sampled metrics for item recommendation. In
KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, pages 1748-1757. ACM, 2020.

J. Lee, Y. Oh, Y. In, N. Lee, D. Hyun, and C. Park. Grafn: semi-supervised node
classification on graph with few labels via non-parametric distribution assignment.
In SIGIR ’22: The 45th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 2243-2248. ACM, 2022.

J. Li, Y. Wang, and J. J. McAuley. Time interval aware self-attention for sequential
recommendation. In WSDM °20: The Thirteenth ACM International Conference on
Web Search and Data Mining, pages 322-330. ACM, 2020.

J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma. Neural attentive session-based
recommendation. In Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management, CIKM 2017, pages 1419-1428. ACM, 2017.

Q. Liu, Y. Zeng, R. Mokhosi, and H. Zhang. STAMP: short-term attention /memory
priority model for session-based recommendation. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery € Data Mining, KDD
2018, pages 1831-1839. ACM, 2018.

L. Li, M. Medo, C. H. Yeung, Y.-C. Zhang, Z.-K. Zhang, and T. Zhou. Recom-
mender systems. Physics reports, 519(1):1-49, 2012.

31



Bibliography

[35]

[36]

137]

[38]

[39]

[40]

[41]

[42]

[43]

|44]

[45]

[46]

M. Ludewig, I. Kamehkhosh, N. Landia, and D. Jannach. Effective nearest-neighbor
music recommendations. In Proceedings of the ACM Recommender Systems Chal-
lenge, RecSys Challenge 2018, 3:1-3:6. ACM, 2018.

C. Ma, P. Kang, and X. Liu. Hierarchical gating networks for sequential recom-
mendation. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery € Data Mining, KDD 2019, pages 825-833. ACM, 2019.

C. Ma, L. Ma, Y. Zhang, J. Sun, X. Liu, and M. Coates. Memory augmented
graph neural networks for sequential recommendation. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, pages 5045-5052. AAAI Press,
2020.

P. Melville and V. Sindhwani. Recommender systems. Encyclopedia of machine
learning, 1:829-838, 2010.

M. Moscati, E. Parada-Cabaleiro, Y. Deldjoo, E. Zangerle, and M. Schedl. Music4all-
onion - A large-scale multi-faceted content-centric music recommendation dataset.
In Proceedings of the 81st ACM International Conference on Information € Knowl-
edge Management, pages 4339-4343. ACM, 2022.

A. Peintner, A. R. Mohammadi, M. Miiller, and E. Zangerle. Hypergraph-based
temporal modelling of repeated intent for sequential recommendation. In Proceed-
ings of the ACM on Web Conference 2025, WWW 2025, pages 3809-3818. ACM,
2025. DorL: 10.1145/3696410.3714896.

A. Peintner, A. R. Mohammadi, and E. Zangerle. Efficient session-based recom-
mendation with contrastive graph-based shortest path search. ACM Transactions
on Recommender Systems, 3(4), Apr. 2025. DOI: 10.1145/3701764.

A. Peintner, A. R. Mohammadi, and E. Zangerle. SPARE: shortest path global
item relations for efficient session-based recommendation. In Proceedings of the
17th ACM Conference on Recommender Systems, RecSys 2023, pages 58—69. ACM,
2023. por: 10.1145/3604915.3608768.

A. Peintner, M. Moscati, Y. Kinoshita, R. Vogl, P. Knees, M. Schedl, H. Strauss, M.
Zentner, and E. Zangerle. Nuanced music emotion recognition via a semi-supervised
multi-relational graph neural network. Transactions of the International Society for
Music Information Retrieval, 8(1):140-153, 2025. DOI: 10.5334/tismir.235.

A. Peintner, M. Moscati, E. Parada-Cabaleiro, M. Schedl, and E. Zangerle. Unsu-
pervised graph embeddings for session-based recommendation with item features.
In CARS: Workshop on Context-Aware Recommender Systems (RecSys ’22), 2022.

B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: online learning of social repre-
sentations. In The 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 14, pages 701-710. ACM, 2014.

M. Quadrana, P. Cremonesi, and D. Jannach. Sequence-aware recommender sys-
tems. ACM Computing Surveys (CSUR), 51(4):1-36, 2018.

32


https://doi.org/10.1145/3696410.3714896
https://doi.org/10.1145/3701764
https://doi.org/10.1145/3604915.3608768
https://doi.org/10.5334/tismir.235

Bibliography

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

S. Rendle. Factorization machines. In 2010 IEEFE International conference on data
mining, pages 995-1000. IEEE, 2010.

S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. BPR: bayesian
personalized ranking from implicit feedback. In UAI 2009, Proceedings of the

Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pages 452—461.
AUALI Press, 2009.

S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme. Factorizing personalized
markov chains for next-basket recommendation. In Proceedings of the 19th In-
ternational Conference on World Wide Web, WWW 2010, pages 811-820. ACM,
2010.

F. Ricci, L. Rokach, and B. Shapira. Introduction to recommender systems hand-
book. In Recommender Systems Handbook, pages 1-35. Springer, 2011.

B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl. Item-based collaborative fil-
tering recommendation algorithms. In Proceedings of the Tenth International World
Wide Web Conference, WWW 10, pages 285—-295. ACM, 2001.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph
neural network model. IEEFE transactions on neural networks, 20(1):61-80, 2008.

M. Schedl, H. Zamani, C.-W. Chen, Y. Deldjoo, and M. Elahi. Current challenges
and visions in music recommender systems research. International Journal of Mul-
timedia Information Retrieval, 7:95-116, 2018.

M. S. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, 1. Titov, and M. Welling.
Modeling relational data with graph convolutional networks. In The Semantic Web
- 15th International Conference, ESWC 2018, volume 10843 of Lecture Notes in
Computer Science, pages 593-607. Springer, 2018.

Q. Tan, J. Zhang, N. Liu, X. Huang, H. Yang, J. Zhou, and X. Hu. Dynamic
memory based attention network for sequential recommendation. In Thirty-Fifth
AAAI Conference on Artificial Intelligence, AAAI 2021, pages 4384-4392. AAAI
Press, 2021.

Y. K. Tan, X. Xu, and Y. Liu. Improved recurrent neural networks for session-
based recommendations. In Proceedings of the 1st Workshop on Deep Learning for
Recommender Systems, DLRS@RecSys 2016, pages 17-22. ACM, 2016.

J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. LINE: large-scale in-
formation network embedding. In Proceedings of the 24th International Conference

on World Wide Web, WWW 2015, pages 1067-1077. ACM, 2015.

J. Tang and K. Wang. Personalized top-n sequential recommendation via convo-
lutional sequence embedding. In Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining, WSDM 2018, pages 565-573. ACM,
2018.

33



Bibliography

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

S. Thakoor, C. Tallec, M. G. Azar, R. Munos, P. Velickovi¢, and M. Valko. Boot-
strapped representation learning on graphs. In ICLR 2021 Workshop on Geomet-
rical and Topological Representation Learning, 2021.

T. X. Tuan and T. M. Phuong. 3d convolutional networks for session-based recom-
mendation with content features. In Proceedings of the Eleventh ACM Conference
on Recommender Systems, RecSys 2017, pages 138-146. ACM, 2017.

P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph
attention networks. In 6th International Conference on Learning Representations,
ICLR 2018, Conference Track Proceedings. OpenReview.net, 2018.

P. Velickovic, W. Fedus, W. L. Hamilton, P. Lio, Y. Bengio, and R. D. Hjelm. Deep
graph infomax. In 7th International Conference on Learning Representations, ICLR
2019. OpenReview.net, 2019.

B. Wang and W. Cai. Knowledge-enhanced graph neural networks for sequential
recommendation. Inf., 11(8):388, 2020.

C. Wang, M. Zhang, W. Ma, Y. Liu, and S. Ma. Make it a chorus: knowledge-
and time-aware item modeling for sequential recommendation. In Proceedings of

the 43rd International ACM SIGIR conference on research and development in
Information Retrieval, SIGIR 2020, pages 109-118. ACM, 2020.

S. Wang, L. Hu, Y. Wang, L. Cao, Q. Z. Sheng, and M. Orgun. Sequential
recommender systems: challenges, progress and prospects. In Proceedings of the
Twenty-Fighth International Joint Conference on Artificial Intelligence, IJCAI-19,
pages 6332-6338, 2019.

Z. Wang, W. Wei, G. Cong, X. Li, X. Mao, and M. Qiu. Global context enhanced
graph neural networks for session-based recommendation. In Proceedings of the 43rd
International ACM SIGIR conference on research and development in Information
Retrieval, SIGIR 2020, pages 169-178. ACM, 2020.

M. Won, A. Ferraro, D. Bogdanov, and X. Serra. Evaluation of cnn-based automatic
music tagging models. CoRR, abs/2006.00751, 2020.

L. Wu, S. Li, C. Hsieh, and J. Sharpnack. SSE-PT: sequential recommendation via
personalized transformer. In RecSys 2020: Fourteenth ACM Conference on Recom-
mender Systems, pages 328-337. ACM, 2020.

S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan. Session-based recom-
mendation with graph neural networks. In The Thirty-Third AAAI Conference on
Artificial Intelligence, AAAI 2019, volume 33 of number 01, pages 346-353. AAAI
Press, July 2019.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip. A comprehensive sur-
vey on graph neural networks. IEEE transactions on neural networks and learning
systems, 32(1):4-24, 2020.

34



Bibliography

[71]

[72]

73]

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

X. Xia, H. Yin, J. Yu, Y. Shao, and L. Cui. Self-supervised graph co-training
for session-based recommendation. In CIKM ’21: The 30th ACM International
Conference on Information and Knowledge Management, pages 2180-2190. ACM,
2021.

C. Xu, P. Zhao, Y. Liu, V. S. Sheng, J. Xu, F. Zhuang, J. Fang, and X. Zhou.
Graph contextualized self-attention network for session-based recommendation. In
Proceedings of the Twenty-Eighth International Joint Conference on Artificial In-
telligence, IJCAI 2019, pages 3940-3946. ijcai.org, 2019.

C. Xu, P. Zhao, Y. Liu, J. Xu, V. S. Sheng, Z. Cui, X. Zhou, and H. Xiong.
Recurrent convolutional neural network for sequential recommendation. In The

World Wide Web Conference, WWW 2019, pages 3398-3404. ACM, 2019.

Y. Xu, Y. Zhang, W. Guo, H. Guo, R. Tang, and M. Coates. Graphsail: graph
structure aware incremental learning for recommender systems. In CIKM ’20: The

29th ACM International Conference on Information and Knowledge Management,
pages 2861-2868. ACM, 2020.

Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec. Gnnexplainer: generating
explanations for graph neural networks. In Advances in Neural Information Pro-
cessing Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, pages 9240-9251.

J. Yu, H. Yin, X. Xia, T. Chen, L. Cui, and Q. V. H. Nguyen. Are graph augmenta-
tions necessary? simple graph contrastive learning for recommendation. In SIGIR
22, pages 1294-1303. ACM, 2022.

L. Yu, C. Zhang, S. Liang, and X. Zhang. Multi-order attentive ranking model for
sequential recommendation. In The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, pages 5709-5716. AAAI Press, 2019.

E. Zangerle and C. Bauer. Evaluating Recommender Systems: Survey and Frame-
work. ACM Computing Surveys, 55(8):170:1-170:38, 2022.

E. Zangerle, M. Pichl, W. Gassler, and G. Specht. #nowplaying music dataset:
extracting listening behavior from twitter. In Proceedings of the First International
Workshop on Internet-Scale Multimedia Management, WISMM 2014, pages 21-26.
ACM, 2014.

T. Zhang, P. Zhao, Y. Liu, V. S. Sheng, J. Xu, D. Wang, G. Liu, and X. Zhou.
Feature-level deeper self-attention network for sequential recommendation. In Pro-
ceedings of the Twenty-Fighth International Joint Conference on Artificial Intelli-
gence, IJCAI 2019, pages 4320-4326. ijcai.org, 2019.

Y. Zhang, Y. Liu, Y. Xu, H. Xiong, C. Lei, W. He, L. Cui, and C. Miao. Enhancing
sequential recommendation with graph contrastive learning. In Proceedings of the
Thirty-First International Joint Conference on Artificial Intelligence, IJCAI 2022,
pages 2398-2405. ijcai.org, 2022.

35



Bibliography

[82]

K. Zhou, H. Wang, W. X. Zhao, Y. Zhu, S. Wang, F. Zhang, Z. Wang, and J.
Wen. S3-rec: self-supervised learning for sequential recommendation with mutual
information maximization. In CIKM °20: The 29th ACM International Conference
on Information and Knowledge Management, pages 1893-1902. ACM, 2020.

36



Part Il.

Selected Papers






5. Unsupervised Graph Embeddings for Session-based Recommendation

5. Unsupervised Graph Embeddings for
Session-based Recommendation with
Item Features

Publication

A. Peintner, M. Moscati, E. Parada-Cabaleiro, M. Schedl, and E. Zangerle. Unsuper-
vised graph embeddings for session-based recommendation with item features. In CARS:
Workshop on Context-Aware Recommender Systems (RecSys '22), 2022

Abstract

In session-based recommender systems, predictions are based on the user’s preceding
behavior in the session. State-of-the-art sequential recommendation algorithms either use
graph neural networks to model sessions in a graph or leverage the similarity of sessions by
exploiting item features. In this paper, we combine these two approaches and propose a
novel method, Graph Convolutional Network Extension (GCNext), which incorporates
item features directly into the graph representation via graph convolutional networks.
GCNext creates a feature-rich item co-occurrence graph and learns the corresponding
item embeddings in an unsupervised manner. We show on three datasets that integrating
GCNext into sequential recommendation algorithms significantly boosts the performance
of nearest—neighbor methods as well as neural network models. Our flexible extension
is easy to incorporate in state-of-the-art methods and increases the MRR@20 by up to
12.79%.
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5.1. Introduction

Recommender systems (RecSys) traditionally leverage the users’ rich interaction data
with the system. However, in some cases, such data are not available. Session-based
recommender systems, in contrast, aim to predict the next item the user will interact
with (e.g., click on, purchase, or listen to) only based on the preceding interactions
in the current session. The task of session-based recommendation can be defined as
follows. Consider the set X of all items in the catalog, x € X being an individual item,
and m = |X| being the number of items in the catalog. Given an interaction session
[x1, 2, ...,x,] (ordered by timestamp), the goal is to predict a ranked list [y1,y2, ..., Ym]
of items with corresponding relevance scores to continue the session. The top-k values of
the ranked list are chosen as recommendation candidates. As opposed to session-aware
or sequential recommendations, the inputs to session-based RecSys are only items of
the current session and their features; users are anonymous and no inter-session data is
available.

Current approaches for session-based recommendation leverage Recurrent Neural Net-
works (RNNs) [14, 31, 34|, attention networks |20, 21|, Graph Neural Networks (GNNs) [27,
41, 42], or transformer architectures [4, 17, 33]. Also, classical nearest—neighbor methods
have been used [6, 16, 24, 25]. Most current methods focus on the sequential nature of
sessions; RNNs and nearest—neighbor methods have dominated research in the past few
years. Extensions to these models use additional item features to enrich the item repre-
sentations. Item features capture contextual information (e.g., item category) which is
relevant to the task of session-based recommendation, which itself can be considered a
special case of context-aware recommender systems [30]. However, recently, GNN mod-
els have been shown to outperform RNN- and nearest-neighbor-based methods [9, 25,
41]. Yet, to the best of our knowledge, no approach combines auxiliary item features
and GNNs to learn informative embeddings for sequential models. In this paper, we
therefore propose Graph Convolutional Network Extension (GCNext), which extracts
node embeddings from a feature-rich item co-occurrence graph via unsupervised learn-
ing with Graph Convolutional Networks (GCNs). We then use these pre-trained item
embeddings as auxiliary features describing items and their structural dependence. One
major advantage and novelty of GCNext is that it can flexibly be plugged into any cur-
rent sequential recommendation method. Particularly, we (1) use the computed item
embeddings to initialize sequential neural network models, and (2) extend (non-neural)
nearest—neighborhood methods with pre-trained item graph embeddings to refine the
search of candidate sessions for recommendation.

Our main contributions are as follows: (1) We present GCNext, a novel method for
session-based recommendation based on a item co-occurence graph for sessions. GCNext
combines the topological representation power of GCNs with the session representation
generated by neural network sequential models without modifying their architecture;
(2) GCNext can easily extend nearest-neighbor methods as well as neural network models
in a plug-in fashion to further enhance the performance of these models; (3) We perform
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a large-scale evaluation of graph-based item embeddings and their impact on a diverse
set of sequential models. We find that adding GCNext is not only able to boost the
performance of current methods, but also shows significant performance improvements
over current state-of-the-art sequential models.

5.2. Related Work

In the following, we briefly present related works in the field of graph and node embed-
ding. We subsequently discuss approaches for sequential and session-based recommen-
dation, which incorporate side information or GNNs.

5.2.1. Graph and Node Embeddings

Graph embedding aims to generate low-dimensional vector representations of the graph’s
nodes which preserve topology and leverage node features. Non-deep learning methods
are mainly based on random walks to explore node neighborhoods [8, 28, 35|. With
GCNs [19, 38], more sophisticated graph embedding methods were introduced: To scale
GCNs to large graphs, the layer sampling algorithm [10]| generates embeddings from
a fixed node neighborhood. Current state-of-the-art methods in unsupervised learning
of representations rely on contrastive methods which base their loss on the difference
between positive and negative samples. Deep Graph Infomax (DGI) [39] contrasts node
and graph encodings by maximizing the mutual information between them. Hassani
and Khasahmadi [11] propose multi-view representation learning by contrasting first-
order neighbor encodings with a general graph diffusion. Contrastive learning methods
usually require a large number of negative examples and are, therefore, not scalable
for large graphs. The approach by Thakoor et al. [37] learns by predicting substitute
augmentations of the input and circumventing the need of contrasting with negative
samples.

5.2.2. Sequential Recommendation

Non-neural sequential recommendation approaches focus on the similarity of sessions to
extract potential next items. Several works extend the session-based nearest-neighbors
method with additional factors such as positions, recency, and popularity [6, 16, 24,
25]. Other works [17, 20, 21, 34] model item-to-item transitions using neural networks,
possibly incorporating item features [4, 15, 43].

Recent works exploit the graph-based representation of sessions for improved recom-

mendations. Current state-of-the-art use GNNs—in combination with attention or self-
attention modules—to capture complex transitions and rich local dependencies [41, 42].
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Further approaches enrich the graph topology with knowledge base entities [1, 40]. Gwad-
abe and Liu [9] use an item co-occurrence graph to generate session co-occurrence rep-
resentations which are combined with the local and global preferences of users.

In contrast to models that integrate item features by extending the network with ad-
ditional paths, GCNext extracts item embeddings from the item co-occurrence graph,
in which content-based features are attached to each node. GCNext can be added to
different sequential models without modifying their architecture, essentially using it in a
plug-in fashion. Compared to already existing graph-based pretraining schemes [22, 26|
for general recommendation, our approach specifically tackles the task of sequential and
session-based recommendations.

5.3. Graph Convolutional Network Extension (GCNext)

In this section, we present the proposed GCNext approach. An overview of GCNext
applied to sequential neural network models is shown in Figure 5.1. The first compo-
nent represents the item co-occurrence graph from which we extract corresponding node
embeddings by applying an unsupervised learning method. We subsequently use these
embeddings to initialize the item embedding table of the underlying end-to-end sequen-
tial model, which learns session-based recommendations. Furthermore, we show how
GCNext can also be employed for nearest—neighbor methods.

Figure 5.1.: Overview of the graph-based generation of item embeddings and its applica-
tion in sequential neural network models.
Item Embeddings via Graph Convolutional Networks
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Recommendation Learning
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5.3.1. Unsupervised Graph Embeddings

In contrast to other graph-based models [41, 42|, we generate the item-item graph by
extracting item co-occurrences in sessions. Each item is modeled as a node with the
item’s features as descriptors. For two nodes nj; and no, an edge between the nodes
represents the co-occurrence of two items i1 and i in a session. Edges are undirected,
which prevents sequential information from being modeled in the graph. Each edge is
weighted by e;; which denotes the normalized number of co-occurrences (in all sessions)
of the two items it connects. The learning of item-item transitions is solely the task of
the underlying sequential model and the item-item graph embedding only incorporates
the similarity to other items. We strictly rely on inductive representations for new items
to obviate any data leakage into the embeddings.

The item catalog can contain millions of unique items which strongly impacts the scalabil-
ity of the generated item-item graph. Therefore, we apply Bootstrapped Graph Latents
(BGRL) [37] that can be scaled up to graphs with hundreds of millions of nodes and re-
duce the memory requirement substantially by enriching the original graph with simple
augmentations to produce two different, but semantically similar views. Two encoders
then generate online and target embeddings. The online embedding is used as input to
a predictor which forms a prediction for the target embedding. The cosine similarity
of the predictor output and the generated target embedding by the encoder is the final
objective. Our graph embedding in GCNext is based on the BGRL learning method
with our custom encoder architecture. We use the attentional convolution as introduced
in [38] and optimized in 2] as GATv2. The node-wise formulation of this graph operation
is defined as:

h; =0 Z Qg - Whj 5 (5.1)
JEN;
where h denotes the node features, W the linear transformation’s weight matrix and the
average over the neighbor nodes features is weighted by the normalized attention weights
aj;j. The computation of the normalized attention coefficients with softmax including
edge weights can be seen in:

B exp (aTLeakyReLU (W - [h; || hy|| el-j]))
B ZkeM exp (a'LeakyReLU (W - [h; || hy || eix]))’

(5.2)

Odij

where W is a learnable weight matrix, h again denotes the corresponding node fea-
tures, e;; is the edge weight from node n; to neighboring node n; and || denotes vector
concatenation.

Along the lines of other encoder architectures [37, 39|, we stack multiple graph convo-
lutional layers using skip connections and PReLU [12] as an activation function. The
second layer of the encoder performs the computation:

Hs = O’(GATVQCOHV(H;[ + stkizn A)), (5.3)
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where Hy is the output of the previous layer, X are the input node features, W,
is a learnable projection matrix for the skip connection, and A denotes the adjacency
matrix.

Since large graphs, i.e., our proposed item co-occurrence graph, generally do not fit into
GPU memory, we rely on a sub-graph sampling approach based on neighborhood batch
sampling in [10], subsampling a fine-tuned, fixed-sized neighborhood per node.

5.3.2. Extension of Sequential Models

In sequential neural network models, next items are predicted by multiplying the candi-
date item embeddings with the learned session representation and applying the softmax
operation to obtain the corresponding item probabilities. To combine the advantage of
graph-based item embeddings and current state-of-the-art models in session-based rec-
ommendation, we propose the following approach: Instead of initializing the sequential
model’s item embedding table with weights based on sophisticated initialization meth-
ods (for instance, the widely used Xavier initialization [7]), we directly adopt the graph-
generated item embeddings. Thereby, GCNext improves the learning process of the
underlying sequential model as these embeddings capture topological knowledge about
the item-item relations and contain additional item feature information.

We train the graph-based item embeddings in an unsupervised manner. Compared to
end-to-end embedding learning, this has two advantages: First, GCNext is a modular
method that can easily be applied to different sequential models without altering their
architectures. Second, splitting up the training process into two stages supports the
usage in production, since the training of sequential models with the pre-trained item
embeddings converges faster.

In contrast to neural network models, nearest—neighbor methods do not make use of an
item embedding table; they find similar sessions based on the input sequence to predict
the next candidate item. To use GCNext in nearest-neighbor approaches, we propose
using item graph embeddings to find similar session neighbors. To integrate item graph
embeddings in nearest—neighbor methods, we compute the similarity of sessions based
on the cosine distance of the embedding of each item in the input session to every item
in the candidate session. A threshold value on the distance is adapted to find similar
embeddings. Candidate sessions are then scored by the corresponding position mapping
of the similar items based on the nearest—neighbor method or again by their cosine
similarity; as defined by the r-score in Equation 5.4 |25].

| Ticl

IRV

r(SW, 5 (5.4)
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where SO and S(©) refer to the sets of items in input and candidate session, respectively,
and Tj . represents the set of (pairs of) items in the input and candidate session with
embedding similarity below the threshold.

5.4. Experimental Setup
5.4.1. Datasets and Preprocessing

To evaluate GCNext, we conduct experiments on three widely used datasets with differ-
ent characteristics from the e-commerce and music domains. The Diginetica' dataset
(CIKM Cup 2016) provides different item features; we use the category and price of
each item as features (side information) [20, 21]. The Tmall? dataset as part of the
IJCAI-15 competition contains users’ shopping logs along with the category, brand, and
seller as additional item features [36, 43]. Furthermore, we evaluate GCNext on the Mu-
sic4All+ dataset, a version of the Music4All® dataset [32] with 11 item features. We
enrich this dataset with i-vectors [3] of dimensionality 100 based on the 13-dimensional
Mel-Frequency Cepstral Coefficients of the songs and a Gaussian Mixture Model with
256 components [5], using the kaldi toolkit [29]. Similar to [32], we consider listening
events to belong to the same session if there are no gaps of more than 30 minutes between
them.

Following previous works [21, 41], we filter out items appearing less than 5 times and
ignore sessions consisting of a single interaction. Additionally, training sequences are
generated by splitting the input sequence into smaller sub-sequences. Consider, for exam-
ple, the input sequence s = [i1, 2, ..., in |, then the generated sequences and corresponding
next items are ([i1],2), ([i1,i2],23), ..., ([i1, %2, ...in—1], in). The maximum sequence length
is set to 50. Each dataset is sorted by its timestamps and temporally split into training,
validation, and test set (80%, 10%, and 10%). Table 5.1 provides an overview of the
datasets.

Table 5.1.: Dataset Statistics: Number of items, features, sessions, and average session

length.
Dataset Items Feat. Sessions Avg. Length
Diginetica 44,527 2 205,698 4.85
Tmall 97,259 3 188,113 8.11
Music4All+ 80,471 12 601,858 7.70

"https://cikm2016.cs. iupui.edu/cikm- cup/
’https://tianchi.aliyun.com/dataset/dataDetail?datald=42
3https://sites.google.com/view/contact4musicdall
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5.4.2. Base Algorithms and Implementation

One of the main advantages of GCNext is that it can be added to sequential models
in a plug-in fashion to boost their performance. Therefore, we evaluate the following
base algorithms for session-based recommendation with and without adding GCNext:
SKNN [16], STAN [6], V-SKNN [24], and VSTAN [25] as representative nearest-neighbor
methods; GRU4Rec+ [34], Caser [36], NARM |[20], STAMP [21], and SASRec [17] as
state-of-the-art neural network models. In addition, we compare GCNext to current
graph-based approaches (SR-GNN [41], GCSAN ,[42] and Light GCN [13]), and models
including additional item features: GRU4RecF [15] and FDSA [43]. We additionally
implement the graph-based approaches to incorporate the original item features in their
initial embedding tables with naive sum-pooling, which are referred to as SR-GNNF,
GCSANF, and Light GCNF.

All base models use the implementation in RecBole [44] for neural network methods
and session-rec [25| for nearest-neighbor methods. For the BGRL implementation, we
rely on the code given in [37]. We use AdamW [23] to optimize item graph embeddings
and Adam [18] in the sequential model training. The embedding size is fixed to 128 for
comparability and all models performed best with this configuration according to prelim-
inary experiments. We conduct hyperparameter optimization via grid search including
the learning rate, number of layers and heads, layer sizes, and dropout rates for augmen-
tation. Each experiment is repeated five times and the average results are reported. We
provide our implementation on Github?.

We adopt two widely used evaluation metrics to assess the quality of the recommendation

lists: HR@k (Hit Rate) and MRR@k (Mean Reciprocal Rank). Similar to previous
works [4, 21, 31|, each metric is computed with k set to 10 and 20.

5.5. Results and Analysis

Table 5.2 presents the experimental results of all base methods and their performance
when extended with the proposed GCNext approach (column GCNext). When integrat-
ing GCNext into the nearest—neighbor methods (top part of Table 5.2), we observe a
significant performance increase for some base models, and no significant decrease for
any of the base models. In particular, V-SKNN’s performance improves by 0.88% to
6.33% over all datasets on the HR@10 score. Although the metrics show that nearest—
neighbor methods are able to keep up with certain neural network approaches, they lack
in state-of-the art performance across all three datasets.

The effectiveness of our approach is distinctly indicated by the results of neural network
approaches in session-based recommendation. Compared to all neural network meth-

“https://github.com/dbis-uibk/gcnext
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Table 5.2.: Model performances on all datasets; column GCNext indicates the use of
GCNext. Significant improvements over the underlying sequential models (paired ¢-test,
p < .05) are marked with T; best results in bold, second-best results underlined.

] Diginetica Tmall Music4All
Model = MRR HR MRR HR MRR HR
i S| @0 @0 @0 @20 | @0 @0 @0 @0 | @0 @20 @0 @20
Nearest-neighbor Methods
SKNN X | 17.98 1862  36.67 4594 | 2213 2241 3232  36.30 | 1949  19.89  42.83 4845
STAN X | 1543 1612 2895 3897 | 20.13 2041  26.15  30.20 | 18.48  18.85  37.56  42.78
V-SKNN X | 1799 1863  36.59 4584 | 21.84  22.09  30.95 3455 | 1958  19.99  43.06  48.68
VSTAN X | 1527 1597 28.64 3873 | 20.04 20.32  26.01 30.04 | 1841 1877  36.99  42.18
SKNN v/ ] 18077 1871 37117 46407 [ 22.14 2240 3232 36.31 | 19.43  19.85  43.107  48.90T
STAN /| 1543 1612 2895 3897 | 20.14 2042  26.16  30.21 | 1849 1885  37.607  42.80f
V-SKNN v | 18.18" 18.83" 37.23"  46.47f | 22387 22677 3291t 36.951 | 19.667 20.077 43.447  49.20f
VSTAN v | 1527 1597 2864 3873 | 20.04 20.32 26.01  30.05 | 18561 18921 37.41F 42.57"
Neural Network Methods
GRU4Rect | X | 17.09  17.94 3819 5045 | 28.62 29.00 4571  51.02 | 25.18 2562  41.35  47.53
Caser X | 1429  14.82 2654 3420 | 24.30 2454 3561  39.04 | 19.26 19.62 3151  36.63
STAMP X | 1638 17.17  35.62  47.04 | 21.63  21.88  31.62  35.21 | 28.12 2845 41.96  46.60
NARM X | 1735 1818 3854  50.57 | 28.11 2846  44.58  49.71 | 28.82  29.20  42.64  48.00
SASRec X | 19.88 2073  43.09 5524 | 2946 29.84 47.72 53.15 | 28.83 29.23 4525  51.01
GRU4Rect | v | 17.437 18.277 38597 50.787 | 28.74T 29.127 46.117  51.607 | 28.787  29.187  43.337  48.997
Caser v | 15637 16287  30.60T 39.997 | 26.337 26.687 41.15t 46.12" | 20.567 20.927  33.357  38.54f
STAMP v | 17437 1823 37.50T  49.087 | 24.337 24.687 37751 42.821 | 28.607 28.957 42.81F  47.87F
NARM v | 17891 18.73F  39.51F  51.73T | 28.99T 20.397  46.48t 52.19t | 28.89T 29.287  43.11F  48.67F
SASRec v/ | 19.97 20.80" 43.10 55.41% | 29.511 29.937 4770 53.757 | 20.847  30.157 45.43" 51.131
Feature & Graph-based Methods

GRU4RecF | X | 16.04 1691  36.35 4877 | 2525  25.66  42.04  47.97 | 28.67  29.04 4252  47.80
FDSA X | 1892 1979 4129  53.73 | 28.76  29.15  46.48  52.01 | 30.04 3043 4520  50.66
SR-GNN X | 1775 1858  39.18  51.23 | 27.47  27.84  44.67  49.89 | 28.90  29.27  42.62  47.91
SR-GNNF | X | 17.49 1833 3845 50.56 | 2555 2598  41.52  47.70 | 28.72  29.08  41.98  47.14
GCSAN X | 19.20 20.03 41.00 53.01 | 29.01 2941  47.37  53.04 | 29.68  30.05  43.79  49.09
GCSANF | x | 17.21  18.04 37.60 49.57 | 25.16 2558  40.60  46.67 | 30.13 30.49 43.74  48.84
LightGCN | X | 15.90 16.67 3511  46.29 | 26.03 2647 4592  52.16 8.43 9.01 2198  30.18
LightGCNF | X | 1590 16.66  34.96 4592 | 25.80  26.27 4549 5225 | 10.95 11.59 2849  37.45

ods, Caser, which uses convolution-based sequence embeddings, and STAMP, a complete
attention-based method, benefit the most by incorporating GCNext across all three
datasets. On the Diginetica dataset GCNext combined with SASRec, a transformer-
based model, achieves the highest score on each metric throughout. This effect can also
be seen with the Tmall dataset, where SASRec with GCNext increases the state-of-the-
art HR@10 score by 1.12% and significantly outperforms feature-based methods such
as GRU4RecF and FDSA. STAMP extended with GCNext even achieves an increase in
performance of 12.79% on the MRR@20. Interestingly, this effect becomes less impactful
for the Music4All+ dataset which provides a large set of additional item features. On
this dataset the graph-based self-attention network GCSAN extended with item features
achieves the highest MRR scores. Nonetheless, the evaluation shows significantly im-
proved scores for each of the neural network-based models on the Music4all+ dataset.
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It is also noteworthy that neural network models trained with pre-trained item graph
embeddings converge faster than their corresponding standard initialized counterparts.
We assume this is due to the enriched information contained in the item embeddings.

5.6. Conclusion and Future Work

We proposed GCNext, an extension to sequential recommendation models based on
GCNs. In the first phase, we generate an item co-occurrence graph with nodes/items
enriched with item descriptors to learn its node representations in an unsupervised man-
ner. In the second phase, we use the learned item embedding weights to initialize the
item embedding table of the underlying sequential base model. Our experimental results
on three different datasets show the effectiveness of GCNext.

For future work, we plan to further investigate the potential improvements of graph-based
item embeddings in cold-start scenarios for session-based recommendation. Additionally,
future experiments will compare our approach with different graph embeddings methods
and investigate the diverging impact on baseline models.
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Abstract

Session-based recommendation aims to predict the next item based on a set of anony-
mous sessions. Capturing user intent from a short interaction sequence imposes a va-
riety of challenges since no user profiles are available and interaction data is naturally
sparse. Recent approaches relying on graph neural networks (GNNs) for session-based
recommendation use global item relations to explore collaborative information from dif-
ferent sessions. These methods capture the topological structure of the graph and rely
on multi-hop information aggregation in GNNs to exchange information along edges.
Consequently, graph-based models suffer from noisy item relations in the training data
and introduce high complexity for large item catalogs. We propose to explicitly model
the multi-hop information aggregation mechanism over multiple layers via shortest-path
edges based on knowledge from the sequential recommendation domain. Our approach
does not require multiple layers to exchange information and ignores unreliable item-
item relations. Furthermore, to address inherent data sparsity, we are the first to apply
supervised contrastive learning by mining data-driven positive and hard negative item
samples from the training data. Extensive experiments on four different datasets show
that the proposed approach outperforms almost all of the state-of-the-art methods.
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6.1. Introduction

Recommender systems are an important tool for users to obtain useful information.
They are widely adopted in various areas like e-commerce or online streaming services
and implicitly boost business revenue by improving user experience. However, most
conventional recommender systems rely on the availability of user profiles and long-
term interaction histories and therefore, are not suitable for scenarios in which this data
is not available (for instance, anonymous sessions). Tackling this task, session-based
recommendation (SBR) aims at predicting the next most likely item based solely on an
anonymous session [26].

Early works in this field considered Markov Chains and recurrent neural networks (RNNs)
to model the temporal dependencies of items in the session sequence [10, 27]. Based
on the similarity of sessions, nearest-neighbor methods were also deployed for session-
based recommendation [5, 12, 20]. Other approaches incorporated convolutional neural
networks [31, 45| and attention mechanisms [17, 19]|. Recent studies have deployed graph
neural networks (GNNs) to model sessions via graphs and have been shown to be state-
of-the-art [8, 18, 34, 37, 38, 39, 40]. However, the success of current GNN models
relies on using complex multi-layer graphs [8, 34| or several graphs to augment different
aspects of data [38, 39]. While these approaches complement collaborative information,
they can also introduce irrelevant information that adversely affects recommendation
performance as well as being inefficient and computationally expensive [48]. On the
other hand, generating different views of a graph via augmentation with different edge
drop-out rates, for instance, does not adversely affect the performance of contrastive
learning-based recommendation models, and in fact, even large drop-out rates on edges
(e.g., 0.9) are beneficial [43]. Considering these two findings, we investigate the more
general questions: How can we leverage de-noised, simpler graphs for SBR and how do
they compare to complex, noisy graphs?!

Taking into account the above-discussed limitations of noisy and computationally ex-
pensive input graphs, in this paper, we propose Shortest-Path Relations (SPARE) to
enrich a global item graph with informative connections. With SPARE, we introduce
a graph-building strategy that relies on a shortest-path search to drop irrelevant item
connections in the graph. This procedure can be considered as edge sparsification in
the graph and is correlated with the long-standing concept of finding frequent item sets
with high support [1]. As a further important benefit, adding shortest-path shortcut
connections explicitly models item-item importance and imitates the n-hop neighbor
information aggregation of standard GNNs with multiple layers for efficient item repre-
sentation learning. We illustrate this concept in Figure 6.1, where we present template
sessions of an e-commerce grocery retailer. In this example, we have dough, salami,
tomato, and cheese—ingredients in a pizza recipe—in our frequently occurring sessions

!Please note that this manuscript is an extended version of [24], which was presented at the 17th ACM
Conference on Recommender Systems (RecSys 2023).
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S1: Cheese Salami Pineapple Dough }x20
S2: Salami Dough Tomato } x99
S3: Dough Tomato Shampoo Salami }x1
S4. Cheese Tomato }x55
S5 Pineapple Dough Cheese Salami } x 20
S6: Tomato Chocolate Salami Dough }x2

Figure 6.1.: A toy example of an e-commerce grocery retailer scenario. Numbers indicate
the frequency of each session.

(sessions 2 and 4). There are also people who purchase less-common ingredients such as
pineapple amongst pizza ingredients (sessions 1 and 5). Additionally, in some sessions,
customers may buy unrelated items, such as shampoo or chocolate (sessions 3 and 6).
The purchase of shampoo or chocolate seems like an irrelevant outlier for a customer who
is looking for ingredients for a pizza recipe. However, pineapple should be considered
as an interesting pattern for the customers who buy pizza ingredients, even in the case
that tomato is in the basket (no co-purchase). Through the high support of pineapple ->
dough and dough -> tomato relations, a shortest-path search in a global item graph finds
a direct connection (shortcut connection) between pineapple and tomato. Furthermore,
since item relations containing shampoo or chocolate have low support, shortest-path
search disregards them as irrelevant, given a proper threshold value, resulting in a sparse
global item graph. However, graph edge sparsification comes with the risk of increasing
data sparsity and popularity bias. To counteract the sparsity of data and reinforcement
of the popular item sets, for the first time, we apply Supervised Contrastive Learning
(SCL) [14] by mining positive and negative item samples in a data-driven manner. With
SCL, we not only tackle the sparsity of data but also improve the model’s performance
by refining the encoder and item representations through the self-supervised learning
objective.

We summarize our main technical contributions as follows:

e We propose a novel global item graph-building strategy (SPARE) based on shortest
paths to introduce item shortcut connections and graph edge sparsification.
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e We integrate a supervised contrastive learning task based on data-driven hard neg-
ative samples to tackle data sparsity and the inherent popularity bias to enhance
recommendation performance.

e Extensive experiments show that our proposed model provides higher efficiency
while significantly outperforming state-of-the-art competitors.

e To ensure reproducibility, we published the code of our experiments and analysis
at GitHub?.

6.2. Related Work

Sequential recommendation leverages user data and long-term interactions, whereas
session-based recommendation is limited to anonymous sessions only. In this section,
we review both tasks and present related research.

6.2.1. Sequential Recommendation

The initial phase of sequential recommendation focuses on discovering short-term item
representations and interaction patterns. Markov decision processes are used in early
works to model the interaction sequences. In FPMC [27], first-order Markov chains cap-
ture sequential patterns while matrix factorization models long-term user preferences.
Also, convolutional neural networks (CNNs) have been found to be useful, where items
are seen as images and short-term sequential patterns are learned via convolutional fil-
ters [30]. Xu et al. [41] combine CNNs with long-short-term memory to extract additional
complex long-term dependencies. In HGN [21], a feature and instance gating mechanism
is used to capture long- and short-term user interests. Other studies apply the attention
mechanism to obtain and fuse different levels of interaction information [29, 44].

Self-attention and Transformer-based architectures are widely used for sequential recom-
mendation models. SASRec [13] applies the self-attention mechanism to identify relevant
interactions from the user’s history. Others use custom Transformer models to provide
more personalized recommendation [3, 36]. In FDSA [49], heterogeneous features of items
are integrated via feature sequences, and self-attention is applied to jointly model item
and feature transition patterns. S3-Rec [51] utilizes self-supervised learning to enhance
the item representations via pre-training methods.

Hsu and Li [11] extract a local subgraph from a user-item pair and apply self-attention
to encode long-term and short-term temporal patterns. MA-GNN [22]| captures the
item contextual information within a short-term period with a graph neural network

*https://github.com/dbis-uibk/SPARE
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and utilizes a shared memory network to model long-range dependencies. Zhang et
al. [50] extract augmented sequences representations from an item transition graph for a
contrastive learning objective.

6.2.2. Session-based Recommendation

In session-based recommendation, user profiles and long-term interaction histories are
no longer available. Consequently, the goal is to effectively model informative session
representations. Early works adopted recurrent neural networks (RNNs) to model the
sequentiality of item interactions. GRU4Rec [10] uses gated recurrent units (GRUS) to
encode interaction sequences. This approach is extended in NARM [17]| with an attention
mechanism that additionally captures the main intent of a session. To capture the general
interest based on the long-term interaction history and the current interest from the most
recent clicks, STAMP [19] introduces a short-term attention/memory priority model.

Based on the knowledge contained in other sessions, a different line of research extracts
collaborative information for improved session representations. SKNN [12] finds sessions
containing the same elements as the current session and relies on selecting items from
the most similar session. Its successor VSKNN [20] extends this approach by taking
the position and frequency of items into account. Another nearest-neighbor approach
named STAN [5] additionally incorporates factors like recency and different item po-
sition weighting strategies. In CSRM [33], neighborhood sessions are used to extract
collaborative information in a hybrid framework with two parallel memory modules.

Most recent works in session-based recommendation are based on GNNs. As the first to
introduce the concept of representing sessions as graphs, SR-GNN [37] models each ses-
sion as a directed, unweighted graph and applies a gating mechanism to generate session
representations. This work is extended by a self-attention mechanism in GCSAN [40]
to effectively capture long-range dependencies. Incorporating collaborative knowledge
into GNN-based methods leads to a new line of research. GCE-GNN [34] learns item
embeddings on a session level as well as on a global level and uses a soft-attention mech-
anism to fuse the learned item representations. Xia et al. [38] introduce a dual-channel
hypergraph to capture beyond-pairwise relations and apply self-supervised learning to
maximize the mutual information between both session representations. MGIR [8] shows
that global incompatible items are informative and aggregate positive and negative re-
lations for the final session representation. In DGNN [18] a dual graph neural network
models explicit dependencies among items and employs a self-learning strategy to capture
implicit correlations among items.

However, some works investigate the limits of using the GNN framework to capture pair-
wise relationships among items. Work in [48] proposes to remove redundant modules and
to focus more on the readout module to achieve multi-level reasoning over item transi-
tions. Chen and Wong [2] tackle the long-range dependency (over-smoothing) problem of
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session graphs by introducing a lossless encoding scheme and a shortcut graph attention
layer. Yang et al. with SPAGAT [42] are the first to introduce the concept of shortest-
path attention in GNNs by applying a complex path feature aggregation strategy and is
therefore not feasible for recommender systems.

With this work, we are the first to exploit shortest-path search to introduce shortcut
connections in a global item graph which significantly increases the computational effi-
ciency of the model. Also, compared to other self-supervised learning methods tackling
the data sparsity in SBR, our approach is the first to mine supervised positive and hard
negative item samples for the computation of the contrastive loss.

6.3. Preliminaries

In this section, we first introduce the problem statement and important notations for
session-based recommendation. Subsequently, we present the construction of the global
item base graph which is based on the sequential appearances of item interactions in the
session data.

6.3.1. Problem Statement and Notations

Let Z = {41,1i2,13,...,in} be the item universe, where N is the number of items. Each
session consists of sequential, temporally ordered interactions with items and is denoted
by s = [i{,15,13, ...,4}], where [ is the length of session s and zj represents the 7™ item
interacted with within this session. Item representations are learned by encoding all
items ¢ € 7 into the same embedding space. Using d dimensions for the embedding,
the item representation set is denoted as X € RV¥*¢ and is randomly initialized with a
uniform distribution. Given a session s, the task of session-based recommendation is to

predict the next item 4, ; of the interaction sequence.

6.3.2. Global Item Base Graph

To capture all item relations in the sessions, a global item graph G = (V, £) is constructed.
This weighted directed graph is defined by V = Z being the item catalog set and £ = {e;;}
the set of all sequential relations between items. There exists an edge €;; from node v;
to node vj; if item 4; is being directly followed by item ¢; in a session. Each edge ¢;; is
assigned a weight w;; defined by the frequency of consecutive appearances of both items
across all sessions. This global item base graph is by nature sparse since items are usually
connected to a very small subset of other items based on the context of a session.
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Figure 6.2.: An overview of the global item graph construction and the pipeline of the
proposed SPARE model. During the graph construction SPARE builds a global item
graph from all user interactions as a first step. In the second step of the graph construc-
tion, the shortest-path search induces shortcut connections in the graph (red arrows) and
drops noisy edges. In the recommendation module, SPARE utilizes graph convolutions
and soft attention to learn session embeddings which are enriched by supervised con-
trastive learning through sampling data-driven positive and negative sessions based on a
custom distance metric.

6.4. Proposed Method

In this section, we present the proposed Shortest-Path Relations (SPARE) global item
graph and the proposed supervised contrastive learning approach for efficient session-
based recommendation based on the SPARE graph. Figure 6.2 presents an overview of
the components in SPARE. First, the global base item graph is enriched by shortest-
path connections in the graph construction phase. The resulting graph is input to the
recommendation component. Particularly, to our graph convolutional layer leading to
learned session representations enhanced by the supervised contrastive learning task for
SBR. Each component will be described in detail in the following.

6.4.1. Sparse and Shortest-Path Aware Iltem Graph

Most graph-based models in SBR using global item graphs rely on G as their workhorse
which by design tends to be noisy and only contains sequential relations of items. Most
existing models based on GNNs for SBR cannot capture long-range dependencies (items
that are multiple hops apart), since they are limited by the receptive field of each node
per layer (1-hop neighbors). Stacking multiple GNN layers enables them to capture
multi-hop relations, but introduces the problem of over-smoothing (node representations
converge to the same value) if the number of layers is larger than three |2, 15]. However,
in real-world datasets, it is very common that sessions contain more than three item
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interactions; yet, items separated over longer distances hold valuable information (cf.
also the dataset statistics presented in Table 6.1). To solve this issue, we introduce the
concept of finding shortest paths in the global item graph to insert suitable shortcut
connections between items and circumvent the problem of over-smoothing.

There exist many efficient algorithms to find the shortest paths between two nodes in a
given graph. In this work, we rely on the widely used Dijkstra algorithm using Fibonacci
Heaps [4] due to its low computational cost. We transform each edge weight to its
inverse weight by subtracting its weight from the maximal weight of all edges to get the
corresponding cost ¢;; to get from node v; to node v;. Then, for each node in the global
item graph G, the shortest path to every other node is computed based on the minimal
cost of the sum of edge costs in the path. The receptive field of each node and the sparsity
of the graph is controlled via the p limit parameter. Choosing p to be in an acceptable
range serves as a threshold value to filter out relations not being sufficiently supported
in the graph, tackling the problem of noisy sequences introduced in the training data
which can mislead the model as shown in [8]. The edge costs ¢; found through the
shortest-path search and the final edge weights w;; in the resulting graph G are defined
as:

n—1
0ij = Zci,i—H (6.1)
i—1

0ij, if 955 <

by=q 0 D=k (6.2)
0, otherwise

’lf}ij = maac(é) — éij, (6.3)

where the sum of individual edge costs d;; is minimized by path P = {v;, vit1,...,v;}
with length n over all possible nodes and C € RV*N s the final cost matrix where each
entry ¢;; corresponds to the minimum cost going from node v; to node v;. Additionally,
with this approach, we are able to include non-direct relations from the original graph G
as shortcut connections with an adapted weight based on the hop distance. We hypoth-
esize that these weighted shortcut connections imitate the n-hop neighbor information
aggregation of standard GNNs with multiple layers, explicitly modeling item-item im-
portance.

Compared to [2] which introduces a local, unweighted graph representation per session
and therefore, also includes misleading item connections, our approach is able to filter
out noisy item-item relations globally and models the importance of items effectively via
corresponding edge weights.
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6.4.2. Path-based Session Graph Encoder

The proposed shortest-path-aware global item graph now contains reliable pairwise item
transitions from all sessions. We use a simple graph convolution to encode connections
in the graph:

H=D :AXD 2, (6.4)

with A = A + I, where A denotes the adjacency matrix A € RY*Y | I the identity
matrix and X € RV*? are the initial item embeddings. We symmetrically normalize the
adjacency matrix A by its degree matrix D. As shown in [35, 38], applying a non-linear
activation function is not essential for recommender systems and is therefore neglected
in this convolutional operation.

In contrast to previous approaches [8, 34|, our model does not make use of an atten-
tion mechanism to learn the importance of different neighbors but directly adopts the
edge weights to quantify the importance of neighboring nodes. We argue that this non-
parametric data~-driven design more efficiently makes use of the shortest-path adjacency
matrix, where each item-item connection already has a corresponding weight, reflecting
the importance based on sequences in the data. Since our global item graph also contains
shortcut connections to nodes that are multiple hops away, our approach only requires
a single convolutional layer (in contrast to other methods that require multiple layers to
increase the size of the receptive field per node). We investigate the impact of this design
on efficiency in Section 6.5.6.

After performing the graph convolutional operation we obtain the global item graph
representations for each item in a session s, e.g., Hg = [hys, hys, ... hye .

Following [8, 34, 38|, we model the sequentiality in sessions via reversed position embed-
dings. Due to the fact that sessions are of different lengths, reversed position embeddings
are able to capture the item importance based on the position in the session more ef-
fectively. The learnable position embedding matrix P = [p1, p2, ps, ..., pi], where [ is the
length of the current session and p; represents the embedding vector for position 4, is in-
tegrated into the item representation via concatenation and non-linear transformation:

hi = tanh (W [hys||pi—i+1] + b1), (6.5)
where W7 € R%*24 41d by € R are learnable parameters.

Session embeddings are computed by aggregating the item representations contained
in the session. To further refine the session embeddings, a soft attention mechanism is
usually applied in graph-based SBR models to prioritize different items in the session [34,
38]. By using this technique, attention weights are obtained as follows:

a; = q'o (Wshj + W3hg + by) (6.6)
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where Wa, W3 € R¥? and q, by € R? are trainable parameters. The average of the ses-
sion’s item representations is denoted by hg. The final session representation is obtained
via linear combination:

l
zZ = Z Oéihvf (67)
=1

6.4.3. Supervised Contrastive Learning

Contrastive learning, particularly in a self-supervised framework, is often employed in
SBR to mitigate inherent challenges such as popularity bias and data sparsity, which can
lead to trivial solutions. Previous works employing self-supervised learning for SBR [38,
39| use different views of a single session as ground truth (positive) supervision signals and
views from other sessions in the mini-batch as negative. In this scenario, InfoNCE [32] has
proven to be a successful learning objective [38, 39]. However, previous approaches fully
neglect the available label information for sampling positive and negative samples leading
to noisy class representations [14]. In our approach, we explicitly mine data-driven
positive and hard negative item samples from all training sessions. The selection of hard
negative item samples is crucial to truly contribute to the gradient of the optimization.

For mining data-driven item samples we define positive sessions as sessions in the training
data with the same target item as the input session. Based on the assumption that in
session-based scenarios the last-clicked item in a session is most important to the target
item, the last items in each of the positive sessions and the target item of the input session
are seen as positive item samples. To ensure the same amount of positive samples per
session in a batch, k positive sessions are randomly sampled from all available positive
sessions per input session s resulting in cf.

To find hard negative items, all sessions containing one or more items from the input
session, excluding sessions with the same target item, are sampled. These negative can-
didate sessions are refined by borrowing a metric from the NLP domain: To our best
knowledge, we are the first to use the BLEU score [23] for session similarity computa-
tion. In contrast to nearest-neighbor methods for SBR which rely mainly on set-based
similarity measures [12, 20], the BLEU score is easily applicable in sequential scenarios.
It relies on a modified precision score p,, for n-grams up to length N which we adopt to
the setting of SBR: We count the number of matching n-grams of items between refer-
ence sessions (input and positive) and each of the negative session candidates. Then the
candidate counts are summed up and normalized. With this modification, repeated item
appearances are penalized, allowing for more informative negative session candidates.
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BLEU essentially computes the geometric average of the n-grams precision and addition-
ally adds a brevity penalty (BP):

1 if i, >1
BP = nor 6.8
{e(l_liﬂ/ln) if 1, < 1, (6.8)

where [,, is the session length (number of interacted items) of the negative candidate
and [, is the session length of the input or the positive sample session closer to l,,. The
BP favors sessions with the exact same length as the reference sessions and prevents too
short /long sessions from being selected as a hard negative session sample. Given this
brevity penalty BP, the BLEU score is computed as follows:

N
BLEU = BP - exp (Z wnlogpn> , (6.9)

n=1

where w,, are positive, uniform weights (e.g., 1/N) to compute the geometric mean of
different n-gram sizes and p,, are the n-grams precision scores. We use the top-k sessions
with the highest BLEU score (denoted as Sg; ;) as hard negative sessions and use their
last-clicked items and target items as negative item samples ¢} :

¢ =top-k (Szrpy) - (6.10)

Following InfoNCE [32, 38| to maximize the agreement between the representations of
the last-clicked items and the target items in combination with the session context, the
learning objective is defined as follows:

Zieci+ W (b, 25, 1)
icest ¥ (hlest zg, hi) 457 4 (hlast z,, hi)’

Lscr, = —logZ (6.11)

JEci
where h!et is the graph representation of the last-clicked item of the given input session
s and ¥ (x1,xe, x3) is defined as exp(fp(x1 + w2, T2 + x3) with temperature parameter
7 to control the effect of discrimination. The discriminator function fp(-) takes two
vectors as input and scores the agreement between them. In our case, we implemented
the cosine operation as discriminator. This contrastive learning approach refines the
representations of the last-clicked items and the target item so that the model is able
to distinguish between positive sessions and similar, but different target item sessions
more effectively. Since this self-supervised loss incorporates target information from the
training data to contrast positive and negative samples, this learning approach can be
regarded as supervised contrastive learning.

6.4.4. Prediction and Model Optimization

Based on the learned item and session representations, the final score for each candidate
item v; € V to be recommended for a session is computed by the dot product of the
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session representation and the global item graph representations. We use a weighted
normalization |7, 46] which has been shown to improve the training process stability and
sensitivity to hyper-parameters:

~

z = w,LaoNorm(z),h; = LoNorm(h;) (6.12)
yi = 5Th,, (6.13)

where w, is the normalized weight, z corresponds to the final session representation and
h; is the computed global item graph embedding of item i. LoNorm denotes the Lo
normalization function.

The final prediction probabilities §; are computed by applying the softmax function to
the score of each candidate item:

i = o) (6.14)

>u,everp(y;)

As a loss function to be minimized, the cross-entropy of the prediction results g is used:

4
Lop(y.9) ==Y (yilog (§i) + (1 —y;) log (1 — ;) + Al|©]]3, (6.15)
i
where y denotes the one-hot encoding vector of the ground truth item. Additionally, A is
a hyper-parameter to control the Lo regularization, given © as the model parameters.

For the final loss, we combine the recommendation task with the supervised contrastive
learning task, where the total loss is given as:

L=Lcg+ BLscrL, (6.16)

where [ is a hyper-parameter to control the magnitude of the contrastive learning. This
loss is then jointly optimized during training. The whole training procedure of the
proposed SPARE model is summarized in Algorithm 1.

6.5. Experiments and Results

In this section, we provide the setup and results of extensive experiments to evaluate
our proposed SPARE model, where we compare SPARE to various state-of-the-art mod-
els in SBR. We establish the following research questions to investigate the impact of
the proposed graph edge modifications and contrastive learning approach and whether
contrastive learning-based approaches indeed require complex graph structures:

e RQ1: How does SPARE perform compared to other state-of-the-art SBR methods
on different datasets?
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Algorithm 1: Training procedure of SPARE.

Input : Training sessions S, item embeddings X
Output: Recommendation list per session
1 Construct global item graph G;

2 Compute shortest-path global item graph G given threshold parameter u;
3 foreach epoch do

4 foreach batch do
5 Learn global item graph representations through Eq. (6.4);
6 foreach session s do
7 Compute session representation following Eq. (6.5) to Eq. (6.7);
8 Obtain positive and negative item samples via Eq. (6.8) to Eq. (6.10);
9 Compute supervised contrastive learning loss with Eq. (6.11);
10 end
11 Jointly optimize the supervised and self-supervised objectives in Eq. (6.16);
12 end
13 end

RQ2: How do different components in SPARE contribute to the performance?

RQ3: How sensitive is SPARE to different settings of hyperparameters (e.g., i,
wy, k)?

RQ4: How does SPARE perform under different similarity measures for computing
the contrastive samples?

RQ5: What is the impact of SPARE in terms of efficiency compared to other
graph-based models?

RQ6: How does SPARE perform with sessions of different length?

RQ7: To which extent can the integration of SPARE’s graph-building strategy
boost the performance of other recommender models?

RQ8: How does SPARE alter the graph structure compared to other baselines?
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6.5.1. Experimental Setup
Datasets and Preprocessing

To evaluate the performance of our approach, we conduct experiments on four represen-
tative and widely used datasets from the e-commerce and music domains. The Tmall?
dataset was published as part of the [JCAI-15 competition and contains user logs of an
online shopping platform. RetailRocket* is a dataset on user browsing activities within
six months and was released by an e-commerce company as part of a Kaggle contest.
Next, the Last.fm® dataset comes from the music domain and includes music listening
histories in which items are artists of the listened songs. Lastly, Gowalla® is a location
check-in dataset and widely used for point-of-interest recommendation.

Table 6.1.: Dataset statistics: Number of sessions, unique items and average session
length (after preprocessing).

Dataset # Train # Test # Items Avg. Length
Tmall 351,268 25,898 40,728 6.69
RetailRocket 433,643 15,132 36,968 5.43
Last.fm 2,837,330 672,833 38,615 11.78
Gowalla 675,561 155,332 29,510 3.85

We follow the preprocessing steps used in [34, 37| for the four datasets. To be more spe-
cific, sessions with length 1 and items appearing less than 5 times are filtered out across all
datasets. The most recent data (e. g., last week) is set as test data and the remaining data
serves as training data. Additionally, we augment a session S = [i1, i2, ..., i,| With a se-
quence splitting method which leads to multiple labeled sequences ([i1],2), ([i1, i2],3), ...,
([i1, 32, -.-in—1],in), where the last item in each set is the corresponding label (or target
item) of the sequence. Additionally for Gowalla we follow previous works [2, 6] and keep
the top 30,000 most popular locations and generate sessions by grouping user check-in
records per day. Table 6.1 provides an overview of the datasets after preprocessing.

Evaluation Metrics

Following previous works [34, 38, 47|, we adopt P@k (Precision) and MRR@k (Mean
Reciprocal Rank) to evaluate the quality of the recommendation results. For each metric,
k is set to 10 and 20.

*https://tianchi.aliyun.com/dataset/dataDetail?datald=42
“https://www.kaggle.com/retailrocket/ecommerce-dataset
Shttp://ocelma.net/MusicRecommendationDataset/lastfm- 1K.html
Shttps://snap.stanford.edu/data/loc-gowalla.html
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Baseline Methods

We compare SPARE with the following representative baseline and state-of-the-art meth-
ods for session-based recommendation:

o Item-KNN [28]: recommends items based on the similarity between items of the
current session and the items of other user sessions.

e FPMC [27]: captures sequential effects and user preferences with matrix factor-
ization and first-order Markov chains. To make it applicable for session-based
recommendation, user latent representations are not used when computing recom-
mendation scores.

e GRU4Rec [10]: a RNN-based method that applies Gated Recurrent Unit (GRU)
in combination with a ranking-based loss function to model user interaction se-
quences.

e NARM |[17]: extends GRU4Rec with an attention mechanism to capture the user’s
main purpose efficiently.

e STAMP [19]: replaces all RNN encoders in previous works by attention layers
and relies on the self-attention mechanism of the last item to capture short-term
interests.

e SR-GNN ([37]: employs a gated GCN layer to obtain item embeddings. Similarly
to STAMP, self-attention of the last item is used to compute the session embed-
dings.

e FGNN [25]: converts sessions into directed graphs and uses a graph attention layer
to learn item representations.

e GCE-GNN |34]: constructs a session-level and a global co-occurrence graph to
capture local and global information of items.

e S2-DHCN [39]: captures beyond pairwise-relations with hypergraph modeling. It
additionally integrates self-supervised learning into the training of the GNN.

e COTREC [38]: employs a self-supervised co-training approach. GCN encoders
produce two views of a session on an item and session level for the contrastive

learning task.

e MGIR |[8]: models incompatible relations in a graph in addition to sequential and
global co-occurrence.
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e DGNN [18]: employs a dual graph neural network to model explicit and implicit
depenedcies among items.

e Atten-Mixer [48]: drops redundant propagation modules and focuses on the read-
out module to achieve multi-level reasoning over item transitions.

Implementation Details

Along the lines of previous works [8, 34, 38, 39|, the embedding size is set to 100 and the
parameters are initialized with a Gaussian distribution. For optimization, we use Adam
with a learning rate of 0.001 and a batch size of 100. The Lo regularization is set to
10~° for all four datasets. Additionally, we apply a learning rate decay strategy, where
the learning rate is decreased by a factor of 10 every 3 epochs. The maximum session
length is set to 50 for all four datasets. The weighted normalization hyper-parameter
w,, the weight of the self-supervised loss 3, and the number of samples k are searched in
the ranges of {10, 11,12, ..., 20}, {0.001, 0.005, ...,0.5} and {1, 2,4, 8, 16, 32}, respectively.
Since we use the same evaluation setup and datasets as the baseline methods, we adopt
their best parameter setup and directly report their results if available. Our implemen-
tation is based on PyTorch 1.10.2 and Python 3.8.12. All experiments are performed
on a workstation with an AMD Ryzen 2950X, a GeForce RTX 2070, and 256 GB main
memory. We publish the code and the pre-processed datasets on GitHub.

6.5.2. Overall Performance (RQ1)

To demonstrate the recommendation performance of our proposed method, we com-
pare SPARE with several other state-of-the-art and baseline SBR methods (see Baseline
Methods). The overall performance on the four datasets is shown in Table 6.2. From
this table, we can draw distinct conclusions which we will elaborate in the following.

Conventional methods like FPMC are outperformed by RNN-based methods (e.g.,
GRU4Rec, NARM, STAMP), which indicates the importance of modeling the sequential
information of sessions. NARM and STAMP additionally incorporate an attention mech-
anism to learn item importance and show a large performance improvement compared to
GRU4Rec. Since GRU4Rec only considers sequential behavior, it is not able to capture
shifts in user preference.

Graph-based models easily outperform the aforementioned RNN-based methods and dis-
play the advantages of using graphs to model sessions. GCE-GNN and MGIR include
inter- and intra-session information and are able to achieve a substantial performance
boost compared to SR-GNN, demonstrating the importance of capturing different lev-
els of information. S2-DHCN and COTREC both have a two-branch architecture to

"https://github.com/dbis-uibk/SPARE
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Table 6.2.: Model performance on all four datasets for baselines, state-of-the-art models

(SotA), and our proposed SPARE approach. All improvements of SPARE compared

to the second best performing model are significant (paired ¢-test, p < .01). The best
results are in boldface and the second-best results are underlined.

Tmall RetailRocket Last.fm Gowalla

Method P MRR P MRR P MRR P MRR
@10 @20 @10 @20 @10 @20 @10 @20 @10 @20 @10 @20 @10 @20 @10 @20

Ttem-KNN 6.65 9.15 3.11 331 2248 2400 1043 1070 9.77 1484 448 485 25.08 38.60 14.37 16.66

s FPMC 13.10 16.06  7.12 7.32 2599 3237 13.38 1382 11.67 17.68 4.58 4.99 2047 2991 9838 1145
.= GRU4Rec 16.59 2039  9.05 9.31 3835 44.01 2327 23.67 1286 17.90 529 539 31.56 41.91 17.85 18.29
% NARM 19.17  23.30 1042 10.70 42.07 50.22 24.88 24.59 15.03 21.83 6.71 7.59 40.53 50.11 22.94 23.89
M STAMP 22.63 2647 1312 1336 4295 50.96 24.61 25.17 15.65 22.01 7.50 798 4099 50.15 23.10 24.03
SR-GNN 2341 2757 1345 13.72 4321 50.32 26.07 26.57 1690 2233 7.85 823 41.89 50.29 23.78 2431
FGNN 20.67 2524 10.07 10.39 41.78 50.20 2459 25.89 1590 2220 7.28 8.02 42.09 50.11 2291 24.11
GCE-GNN 28.01 3342 1508 1542 4790 55.59 28.04 2858 18.28 24.39 8.32 863 4590 54.48 24.29 24.89
< S2-DHCN 26.22 3142 14.60 1505 46.15 53.66 26.85 27.30 15.37 22.06 6.95 7.57 4511 53.34 23.29 23.88
& COTREC 30.62 36.35 17.65 18.04 48.61 56.17 29.46 29.97 16.89 2334 781 824 4515 53.76 2345 24.02
MGIR 30.65 36.41 17.06 17.42 4887 56.62 29.35 29.84 17.99 24.72 837 8.82 4539 53.87 23.70 24.29
DGNN 18.96 23.05 10.38 10.65 43.08 50.26 24.76 2526 1583 21.71 7.83 823 4279 50.70 23.83 24.38
Atten-Mixer 31.79 3743 1835 18.75 48.63 56.66 27.95 2851 16.79 23.01 823 8.66 4560 53.92 26.35 26.93
SPARE 33.61 39.28 19.78 20.07 49.07 56.91 29.75 30.22 19.66 27.00 8.41 8.91 47.65 56.77 23.87 2448
Improv. (%) 5.72 4.94 7.79 7.04 0.41 0.44 0.98 0.83 7.55 922 048 091 381 4.20 - -
p-value le®  7Te ' 7e710 1710 ge3 2¢73 6e =3 6e3  4e710 4710 3e73 207t 1e7T le™" - -

make use of a contrastive learning framework and are easily competitive. Specifically,
COTREC and MGIR show superior performance to most of the graph-based models
indicating the advantage of using self-supervised learning and global item graphs.

Our proposed method SPARE significantly surpasses all current state-of-the-art baseline
methods on the first three datasets on all provided metrics. Particularly, our model
improves the performance significantly by 5.72% on Precision@10 and 7.79% on MRR@10
for the Tmall dataset, showing the importance of dropping unreliable relations from e-
commerce data. For Gowalla our approach reaches best performance for Precision and
third-best for MRR compared to all models, which potentially shows that the particular
task of point-of-interest recommendation inherits different characteristics than product
or music recommendation. Especially, since Atten-Mixer, a non-graph-based model,
achieves the best MRR overall on this dataset. Additionally, we observe that COTREC
and MGIR have competitive performance on the RetailRocket and Last.fm datasets in
terms of MRR. However, both of these methods introduce a complex architecture and
have a higher running time compared to SPARE, limiting their practical applicability. We
provide more details about the efficiency and running time of all current state-of-the-art
models in Section 6.5.6.

6.5.3. Ablation Study (RQ2)

To investigate the impact of each component in our approach, including the shortest-path
aware item graph (Section 6.4.1) and the supervised contrastive learning (Section 6.4.3),
we present different variants of SPARE in this section: SPARE-base, SPARE-NSP,

69



6. Contrastive Graph-based Shortest Path Search

I SPARE-base [ SPARE-NSP Il SPARE-NSCL IEE SPARE

Tmall RetailRocket Tmall RetailRocket
5 2 3013 3921 3328 174

(%)

Performance (%)
m

Performance

L Perormance (08)

s 20514078
207 pa
N
MO BN J/ .

Last.fm Gowalla Last.fm Gowalla
. 3898 260 56313

- - s -
g 5 g g
5 o & g 5
gu PETI VY01 g g * E s0
£ t £ 2 t
& e & & &
82, 20 1966 19.67 19.69 19,66 s 4728 1237 A2 T2
———— AL
5
MMMMMMMMMMMM
(a) Mean Reciprocal Rank. (b) Precision.

Figure 6.3.: Ablation study of components in SPARE.

and SPARE-NSCL. In SPARE-base we omit the shortest-path search as well as the
supervised contrastive learning. For SPARE-NSP only the shortest-path search on the
global item graph is removed and in SPARE-NSCL only the supervised contrastive
learning component is discarded. These models will be evaluated against the full SPARE
model on all datasets. As previous studies [38, 39| already have shown that the reversed
position embeddings and the soft-attention mechanism are important components, we
discard these variants for our study.

In Figure 6.3a and Figure 6.3b we display the performances of all models in terms of
Precision and MRR, both with cutoffs set to 10 and 20. It can be observed that each
of our introduced components consistently contributes to the performance of the model.
On the Tmall, Last.fm and Gowalla datasets both, the shortest-path search and the
supervised contrastive learning, are able to improve the performance significantly if ap-
plied separately. Still, the integration of both components leads to the best-performing
models on all metrics, showing that supervised contrastive learning complements the
sparse, shortest-path graph representation learning. The evaluation on the RetailRocket
dataset shows a slightly different result. Surprisingly SPARE-base is able to outperform
SPARE in terms of Precision by a slight margin but heavily lacks in MRR performance.
We ascribe this to the edge sparsification due to the shortest-path search which removes
noisy items and increases the ranking of important ones, which has a positive impact on
the MRR score. Also, performances on Last.fm seem to be not strongly affected by the
different components. We speculate that this effect stems from the special characteristics
of music datasets, which include longer user sessions as can be seen in Table 6.1. A lower
intra-session sparsity reduces the impact of shortcut connections and contrastive learning
techniques but increases the importance of item-item relation modeling. This effect will
be investigated in Section 6.5.6.
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6.5.4. Impact of Hyper-Parameters (RQ3)

Furthermore, we investigate the impact of the three key hyper-parameters g (weight of
the self-supervised loss), w, (weighted Ly normalization), and k& (number of samples in
SCL). The weight parameter 8 controls the magnitude of the self-supervised learning
task and achieves the best performance if set to 0.2 and 0.15 for Tmall and RetailRocket
as shown in Figure 6.4a. Since we optimize for MRR £ is set to 0.25 and 0.05 for Last.fm
and Gowalla, correspondingly. Additionally, we explore the influence of w,, where setting
it to 1 is equivalent to employing cosine similarity and delivers the poorest results. As w,
increases we observe a gradual improvement on all datasets until it oversaturates which
can be seen in Figure 6.4b. This demonstrates the importance of this scaling factor
to stabilize the training since target items with higher Lo Norm are more prone to be
predicted. In Figure 6.4c different settings for k£ corresponding to the number of positive
and negative samples used in the supervised contrastive loss are displayed. It can be
observed that on the Tmall and Gowalla datasets, a smaller number is sufficient, whereas
the RetailRocket and Last.fm datasets benefit from a higher number of samples.

Furthermore, we investigate the impact of the hyper-parameter p (cost limit for shortest
paths) on the sparsity of the global item graph and the model performance. The sparsity
value per cost limit (or rather, the increase of sparsity) is defined as follows:

# edges
# original edges’

Sparsity =1 — (6.17)
which defines the ratio of increase or decrease of sparsity compared to the original global
item graph and allows us to directly investigate the relationship between higher sparsity
(more reduced noise) and prediction performance. In Figure 6.5 the sparsity and the
MRR@20 score per dataset are displayed. These analyses show that higher sparsity of
the global item graph and therefore possibly dropping unreliable relations for T'mall and
RetailRocket has a considerable impact on the performance. It is worth noting, that
for Tmall and RetailRocket the maximum edge cost in the original global item graph is
197 and 331 correspondingly. For Last.fm and Gowalla, we observe a different behavior:
Instead of filtering out non-frequent relations by setting p below the maximum edge cost,
we reach better performance by using a limit that is the same as the maximum edge cost
(1526 and 153) and therefore introducing a slightly denser global item graph through
the addition of shortest-path shortcut connections. In the case of Last.fm we ascribe
this to the inherent characteristics of music datasets compared to other domains to be
more prone to the popularity bias of songs [16] and benefit more from dense user data for
personalized recommendations [9]. A similar explanation can be provided for the Gowalla
dataset, which can also be affected by over-popular points of interest. This particularly
shows the data-driven versatility of our proposed method, being able to adapt to different
data sparsity conditions. This special behavior of SPARE on Last.fm is analyzed in more
detail in Section 6.5.6, where we show that on this dataset our approach also benefits
from a higher number of layers in the GNN.
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Figure 6.4.: Impact of hyper-parameters in SPARE.

6.5.5. Impact of Supervised Contrastive Learning (RQ4)

In Section 6.4.3 we introduced BLEU as a measure for session similarity. To justify this
design choice and display the impact of the supervised contrastive learning component
in our model we compare different session similarity measures. Nearest-neighbor-based
methods usually rely on session similarity measures to filter out relevant sessions for
the computation of potential next-item candidates [5, 12, 20]. Following their intu-
ition of defining sessions as a set of items we include the following set-based similarity
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Figure 6.5.: Different cost limits p for shortest-path search affect sparsity of the original

global item graph and have an impact on the corresponding MRR@20 performance.

Sparsity is defined as the fraction (given in %) of additional pruned edges compared to
the number of edges in the original item graph.

measures: Cosine-similarity (for sets) and Jaccard-index. Additionally, we also explore
the Damerau-Levenshtein distance, which is usually used to measure the edit distance
between two sequences, in the comparison. As shown in Table 6.3 most of the differ-
ent session similarity measures are able to improve the performance of the base model
without supervised contrastive learning. Interestingly, the set-based measures perform
better than the more sequence-oriented Damerau-Levenshtein distance. Nevertheless,
BLEU with its n-gram overlap-dependent measurement outperforms on average all other
session similarity measures and shows the importance of considering the sequential na-
ture of sessions. Importantly, the positive impact on both performance metrics through
supervised contrastive learning can be seen. On the Tmall and RetailRocket datasets,
incorporating the supervised contrastive learning loss leads to an increase in performance
of 0.17% and 0.76% in Precision@20 and 0.95% and 0.69% in MRR@20, correspondingly.

Other similarity measures like Jaccard-index or Cosine-similarity seemingly can improve

the performance on different datasets, but introduce a trade-off between Precision and

MRR, whereas BLEU is the only measure to deliver consistent improvements, across all
datasets and metrics. We also compare our SCL approach with an self-supervised variant

(SPARE-SSL) which does not use any label information to extract positive and negative
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Table 6.3.: Comparison of different distance measures for session similarity computation.

Tmall RetailRocket Last.fm Gowalla
Similarity P@20 MRR@20 P@20 MRR@20 P@20 MRR@20 P@20 MRR@20

SPARE-NSCL  39.21 19.88 56.48 30.01 26.97 8.90 56.67 24.41
SPARE-SSL 39.14 20.04 56.52 30.12 26.86 8.90 56.72 24.39

Cosine 39.12 19.96 56.69 30.05 27.00 8.91 56.29 24.43
Jaccard 39.23 20.02 56.79 30.09 26.96 8.93 56.52 24.52
Levenshtein 39.08 19.95 56.74 30.03 26.99 8.91 56.39 24.41
BLEU 39.28 20.07 56.91 30.22 27.00 8.91 56.77 24.48

samples. We use random masking of sessions for positive samples and sample random
sessions from the batch for negative samples. Although the self-supervised variant is
competitive with some of the different distance measures, it is clearly outperformed by
our SCL using BLEU similarity. This underlines the importance of using label informa-
tion to sample more informative positive and hard negative samples for the contrastive
loss.

6.5.6. Impact of Number of Layers and Running Times (RQ5)

We hypothesize that SPARE through its shortest-path shortcut connections inherently
introduces a large receptive field per node. Consequently, SPARE does not have to rely
on multiple layers to aggregate node information from neighbors multiple hops away. To
confirm this intuition we compare SPARE-NSCL (our model without the supervised con-
trastive learning component) and COTREC (the model showing the second-best overall
performance) with a different number of layer settings, since they use a similar graph
convolutional operation.

To combine learned node embeddings over multiple layers, we follow the strategy of
COTREC, where item embeddings are averaged over L layers to get the final embed-
dings:

XP=_——3"x (6.18)

Figure 6.6 exhibits the results of these experiments on all four datasets. We can observe
that COTREC heavily relies on learning the item representations in the graph by using
information from n-hop neighbors and constantly reaches its best performance in the
3-layer setting, but suffers from oversmoothing with a higher number of layers. In con-
trast, our proposed method SPARE has stable performance across all settings of layers,
indicating that multi-hop connections are effectively captured by shortest-path shortcut
connections. Notably, on the Last.fm dataset our model is able to constantly improve its
performance with a higher number of layers and is not affected by the over-smoothing
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Figure 6.6.: Comparison of Precision@20 and MRR@20 of COTREC [38] versus SPARE-
NSCL dependent on different number of layers.

issue. We assume this behavior is due to the inherent popularity bias of the dataset so
that a larger receptive field per node stabilizes the training which is also indicated in
Figure 6.5, where a lower data sparsity seems beneficial.

Our model introduces a simple, yet effective architecture and mostly has to rely on
only a single GNN layer (except for Last.fm) to compute the global item embeddings.
To demonstrate the practicability of our approach, we compare the running times as a
proxy for efficiency for SPARE and state-of-the-art graph-based methods for SBR (based
on Table 6.2) on all four datasets. Similar to previous approaches [8] we define the graph
construction as external pre-processing step and do not include this step in the running
time measurement. Although the positive and negative session sampling is a CPU-bound
operation and can easily be parallelized, we include them in the measurement for a fair
comparison. The running times per model are averaged over 5 epochs.

As shown in Table 6.4 our approach has the fastest running time on the Tmall as well as
the RetailRocket and the Gowalla datasets. To be more specific, SPARE is able to reach
a speed-up factor of 1.84x compared to the fastest graph-based method (GCE-GNN)
on RetailRocket. If compared to the second-best performing model in terms of P@20
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Table 6.4.: Comparison of training running times per epoch per graph-based SotA method
(in seconds).

Method Tmall RetailRocket Last.fm Gowalla

GCE-GNN 116 1,154 832 182
S2-DHCN 664 1,313 14,453 1221
COTREC 1,170 1,233 5,220 1085
MGIR 448 1,344 2,408 242
SPARE 105 624 1,540 171

and MRR@20 on Last.fm (MGIR), as shown in Table 6.2, SPARE is faster by 1.56x
in training. This clearly indicates that our approach learns global item representations
more efficiently than every other state-of-the-art graph-based method.

6.5.7. Handling Different Session Lengths (RQ6)

In the dynamic and ever-evolving domain of session-based recommendations, the stability
and adaptability of recommendation models are crucial, especially in real-world scenarios
where sessions vary significantly in length [38]. To assess the robustness of SPARE in
handling sessions of different lengths, we conduct a comparative study using a range
of well-established models: GRU4Rec, SR-GNN, GCE-GNN, and COTREC. For this
study, we follow previous works [19, 38] where each dataset gets divided into two distinct
session length groups: Short and Long. The pivot value to differ between Short and
Long sessions is chosen to be the closest integer to the average length of all sessions in
each dataset. For simplicity the Short group for the datasets Tmall, RetailRocket and
Gowalla encompasses sessions with lengths of five interactions or less, while the Long
group includes sessions exceeding five interactions. For the Last.fm dataset we chose the
pivot value to be 12, since it has a much higher average session length (cf. Table 6.1).

In Figure 6.7 it can be observed that all models generally perform better on Long ses-
sions compared to Short sessions, except for the RetailRocket dataset. This pattern
demonstrates the capability of all models to capture more complex user interests as
session length increases, despite evolving interests and potential added noise in longer
sessions. All graph-based models show commendable performance in both session groups
compared to GRU4Rec, indicating their robustness in handling varied session lengths.
GCE-GNN and COTREC, while effective, exhibit a slight drop in performance in Short
sessions (e.g., Tmall and Gowalla), hinting at potential challenges in managing short-
term user interests. SPARE stands out for its exceptional adaptability, consistently
delivering strong results across both session groups. Especially on Last.fm SPARE can
boost the recommendation performance for short sessions by 8.73% compared to the next
best-performing model GCE-GNN.
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Figure 6.7.: P@20 results on Short and Long sessions.

Table 6.5.: Comparative performance and efficiency metrics of S2-DHCN and COTREC

models with and without SPARE’s graph-building strategy across four datasets.

Im-

provement percentages are calculated relative to the baseline models without SPARE’s
graph-building strategy (w/o) versus with the strategy (w/).

Tmall Last.fm Gowalla
Method P MRR P MRR P MRR
@0 @0 @0 @20 Time(s) @10 @20 @10 @20 Time(s) @10 @2 @0 @20 Time (s)
S2DHCON w/o 26.22 3142 14.60 15.05 664 1537 22.06 6.95 7.57 14,453 45.11  53.34 2329 23.88 1,221
B w 27.15 32.79 15.23 15.75 576 17.24 23.89 7.81 8.26 4,714 46.16 54.94 23.96 24.56 1,004
Improv. (%) 3.54 3.09 4.36 4.62 13.25 12.16 829 1237 9.11 67.38 2.32 2.99 2.87 2.84 17.77
COTREC w/o 30.62 36.35 17.65 18.04 1,170 16.89 2334 7.81 824 5,220 45.15 53.76 23.45 24.02 1,085
31.11 37.10 17.80 18.36 689 17.00 23.47 7.15 8.25 1,170 44.44  52.64 23.53 24.09 1,033
Improv. (%) 1.61 2.05 0.89 1.77 41.11 0.65 0.55 - 0.12 77.58 - 2.72 0.29 4.79

6.5.8. SPARE Enhancement Study (RQ7)

This enhancement study focuses on the performance improvement of baseline recommen-
dation models, specifically S>-DHCN and COTREC, when augmented with the graph-
building strategy derived from the SPARE model. The study aims to establish whether
the integration of SPARE’s strategy can lead to enhanced recommendation performance
and training efficiency. Both S2-DHCN and COTREC models have a similar graph
processing pipeline as SPARE and are adapted to incorporate SPARE’s graph-building
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strategy including the shortest-path search. We hypothesize that our approach (relying
only on a single GNN layer) can outperform the baseline approaches (using three GNN
layers) in terms of performance and training efficiency.

The results, as presented in Table 6.5, indicate a substantial improvement across three
different datasets: Tmall, Last.fm, and Gowalla. The RetailRocket dataset (another e-
commerce dataset similar to Tmall) is neglected for this study due to space reasons.
For S2-DHCN, we observe notable performance gains in Precision and MRR. S2-DHCN
sees an average improvement of 10.22% in Precision and 10.74% in MRR on the Last.fm
dataset, with Tmall and Gowalla also demonstrating notable gains. Notably, these
enhancements come with a substantial decrease in training time (up to 67.38%), under-
scoring the efficiency of the SPARE-inspired strategy.

Similarly, the performance of COTREC, when enhanced with SPARE’s strategy, shows
improvement on most of the datasets in Precision and MRR. COTREC shows a promis-
ing enhancement, with a 2.05% improvement in Precision@20 and a 1.77% increase in
MRR@20 on Tmall. Similar positive trends are observed with Last.fm and Gowalla,
although there is room for further advancement in achieving competitive performances
across all individual metrics. A possible reason for this effect could be the graph aug-
mentations in COTREC, which were probably not intended to be used with custom
graph structures. The training times are also reduced significantly, suggesting that the
graph-building strategy not only enhances recommendation quality but also optimizes
computational efficiency.

The study confirms that the integration of SPARE’s graph-building strategy into baseline
models like S?2-DHCN and COTREC results in a significant performance enhancement.
This improvement is consistent across various metrics and datasets, emphasizing the ro-
bustness of the strategy. For COTREC, we are able to improve on 9 out of 12 metrics,
for S2-DHCN, it’s even 12 out of 12. Furthermore, the reduction in training times high-
lights the strategy’s added benefit of efficiency, making it a possible candidate strategy
for future graph-based SBR.

6.5.9. Graph Structure Case Study (RQ8)

To demonstrate the nuanced capability of our SPARE model in delivering personalized
music recommendations (e.g. on Last.fm), we provide a qualitative view of the graph
structure and analyze a specific case involving a random user session identified by the
session s171275 (as depicted in Figure 6.8). This user has a multifaceted listening history
that includes a wide range of genres, from rock over hardcore to classical. For the
user in question, the session’s listening sequence begins with U2 (a renowned rock band),
transitioning through various genres including hardcore (Evil Activities), reggae (Damian
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Figure 6.8.: A case study of one user session from Last.fm data for music artist recom-
mendation.

Marley), Latin pop (Gloria Estefan), contemporary rock (John Mayer), and culminating
with Maurice Ravel, an iconic classical composer. This eclectic mix indicates a user with
diverse and complex music preferences.

As shown in Figure 6.8, COTREC and SPARE generated graphs differ in their inter-
connections. COTREC mainly models the sequential dependencies from the sessions,
whereas SPARE can reach higher connectivity of each node due to its shortcut con-
nections introduced by the shortest-path search (blue edges). For instance, it connects
Maurice Ravel with artists from different genres, indicating a recognition of the user’s ap-
preciation for both classical compositions and their intricate musicality, which may also
be present in rock and pop music. This contrasts with COTREC’s recommendations,
which, while varied, lack the personalized depth SPARE provides. While COTREC sug-
gests Segil Heper and New Found Glory, which may cater to a more general audience,
SPARE identifies connections with artists like Gloria Estefan and Maurice Ravel, aligning
with the user’s demonstrated interest in both Latin rhythms and classical music.

6.6. Conclusion

Session-based recommendation exhibits many challenges including sparse session data,
anonymous users, and current preference shifts. In this paper, we propose a novel session-
based recommendation model that relies on a shortest-path search to filter out unreli-
able relations and to introduce shortcut connections to items multiple hops away for a
dense graph representation. Moreover, we present a novel supervised contrastive learn-
ing method based on data-driven positive and negative item samples for SBR. To find
hard negative samples we propose to use the BLEU metric to find similar sessions to
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the reference sessions. An extensive experimental evaluation comparing with different
state-of-the-art models shows the effectiveness of our approach and its superiority over
other baseline models.

In future work, we plan to use the denoised global item graphs to extract explainable rec-
ommendations. Furthermore, we aim to investigate the impact of supervised contrastive
learning in combination with weighted Ls normalization on improving popularity bias.
Potentially, these techniques can be applied to a various number of other methods in an
extension-like fashion, some of which we even have shown in this paper.
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A. Peintner, A. R. Mohammadi, M. Miiller, and E. Zangerle. Hypergraph-based temporal
modelling of repeated intent for sequential recommendation. In Proceedings of the ACM
on Web Conference 2025, WWW 2025, pages 3809-3818. ACM, 2025. DOI: 10.1145/
3696410.3714896

Abstract

In sequential recommendation scenarios, user intent is a key driver of consumption be-
havior. However, consumption intents are usually latent and hence, difficult to leverage
for recommender systems. Additionally, intents can be of repeated nature (e.g., yearly
shopping for christmas gifts or buying a new phone), which has not been exploited
by previous approaches. To navigate these impediments we propose the HyperHawkes
model which models user sessions via hypergraphs and extracts user intents via soft clus-
tering. We use Hawkes Processes to model the temporal dynamics of intents, namely
repeated consumption patterns and long-term interests of users. For short-term interest
adaption, which is more fine-grained than intent-level modeling, we use a multi-level
attention mixture network and fuse long-term and short-term signals. We use the gener-
alized expectation-maximization (EM) framework for training the model by alternating
between intent representation learning and optimizing parameters of the long- and short-
term modules. Extensive experiments on four real-world datasets from different domains
show that HyperHawkes significantly outperforms existing state-of-the-art methods.
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7. HyperHawkes: Hypergraph-based Temporal Modelling of Repeated Intent

7.1. Introduction

Recommender systems have long become essential in filtering information effectively, for
instance on video-sharing websites, e-commerce platforms, online bookstores, and social
networks. With the abundance of online information, recommender systems have gained
increasing importance by discovering and leveraging the underlying (latent) intents of
users to cater to their preferences. In recent years, there has been a growing trend in
modeling user sequential behaviors, which aims to capture short-term user interest and
longer-term sequential patterns including popularity trends and interest drifts [42]. While
traditional recommendation methods focus on static user preference modeling [16, 45],
Sequential Recommendation (SR) models dynamically characterize user behaviors [18,
24|, aiming to accurately predict users’ interests in items based on their historical inter-
actions and their corresponding points in time, allowing for more accurate and timely
recommendations [8, 55].

The majority of previous works in SR order items by interaction timestamps and focus
on sequential patterns to predict the next potential item. Early works adopt Markov
chains to provide recommendations based on the L previous interactions via an L-order
Markov chain [15, 46]. Also, Recurrent Neural Networks (RNN) and Convolutional Neu-
ral Networks (CNN) have been applied to model long- and short-term dependencies in
a user interaction sequence [18, 67|]. More recent methods rely on the self-attention
mechanism and transformer-based models for capturing complex sequential dependen-
cies for next-item recommendations [24, 49]. Another line of work explicitly focuses on
modeling temporal dynamics in item sequences based on interaction timestamps |31,
66]. The availability of temporal information also enables models to learn about global
events (e.g., Christmas) [56] and the periodicity of items [4, 55|. Previous works in the
field model the temporal dynamics on an item level or rely on additional category and
knowledge-graph information to represent user intent [19, 54|. However, these approaches
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| A T
I—-- 2 months —I_ ~ 2months
Item Level

Session 1 Session 2 Session 3 Current Session

e 1o

A
u A |
ser User ~ 2 months

History — ~2months

Figure 7.1.: A toy example of an e-commerce retailer scenario with repeated user intents.
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come with several downsides: Learning temporal dynamics on the item level is often dif-
ficult due to data sparsity and ignores co-occurring item consumption patterns across all
users. Also, valuable meta-information for learning user intents is not always available
and mostly ignores personal user preferences like preferred brands, price restrictions, or
re-consumption behavior.

To fill the aforementioned gaps, we propose to extract latent user intents from the user
interaction sequences and model personalized temporal dynamics including repeat con-
sumption on the user intent level. Consider the example in Figure 7.1. During each
session, User A interacts with the system by e.g., viewing or purchasing items with dif-
ferent intents, and in this example, their interest is solely focused on the items relevant
to their current intent. From the user’s interaction history, it is apparent that the intent
of consuming phone accessories is of repeated nature and is connected to the lifetime of
a screen protector for the phone. Explicitly modeling this behavior increases the ability
to recommend suitable phone accessories after a certain period (e.g., two months).

Repeat consumption occurs due to people’s habits. For instance, we frequently purchase
the same items, dine at the same restaurants, and listen to the same songs and artists
often with a certain intent [1|. To empirically analyze the intent repeat consumption
in the real world, we extract sets of frequently co-occurring item sets via the FP-Max
algorithm [13]. For each active user (a user with at least 20 item interactions) we compute
maximum frequent item sets (appearing twice or more in the user history) with a size
larger than 1 to capture intent-level interactions. Then, we compute the maximum
support of all repeated intents per user, where a support of 0.5 of an item set means
this intent is apparent in 50% of the user’s sessions. Figure 7.2 displays the distribution
of intent repeat consumption with different maximum support values for four real-world
benchmark datasets from different domains. Although there is a large portion of users
with non-repeating intents, it is clear to see that intent repeat consumption is prevalent,
and also constitutes a significant portion of interactions in certain domains.

To bridge this gap of modeling temporal dynamics of user intents we propose the Hy-
pergraph-based Hawkes Processes (HyperHawkes) model for sequential recommendation.
Our approach leverages hypergraphs and soft clustering to extract latent user intent rep-
resentations from the user interaction data. Based on these user intent representations
our temporal excitation module learns the dynamics of user intents and item consump-
tion behavior based on Hawkes Processes [14], a temporal point process to model discrete
events in a continuous-time regime. We propose a novel time decay function to represent
the excitation strength between historical intent and item behaviors and their corre-
sponding time intervals. To capture short-term interest changes on the item level, we
additionally compute short-term interest scores based on an attention mixture network,
which captures the influence of the last interacted items in the current session. These
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Figure 7.2.: Distribution of maximal support of intents (item sets with size >= 2) of active
users per dataset. We randomly sampled 1000 users per dataset to ensure comparability
between datasets.

steps ensure that our model effectively combines long-term and short-term user interest,
and models both intent- and item-level temporal dynamics. We summarize our main
technical contributions as follows:

e We propose a novel global item hypergraph construction strategy for learning intent-
based item representations and employ soft clustering to extract latent user intents.

e We integrate Hawkes Processes (temporal point processes) to model long-term tem-
poral dynamics on intent level; further, we fuse short-term interests for increased per-
sonalized recommendation performance.

e We conduct extensive experiments showing that our proposed model achieves signif-

icant performance improvements over a large number of state-of-the-art competitors

on four datasets from different domains.

!Code: https://github.com/dbis-uibk/HyperHawkes
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7.2. Related Work

In this section, we review related work, which includes sequential recommendation, user
intent, and temporal information learning.

7.2.1. Sequential Recommendation

Sequential recommendation aims to recommend items to the user by modeling their past
behavior sequences and characterize their dynamic interests |24, 39, 42, 46]. Earlier
approaches in this field are based on nearest-neighbor methods [12, 21|, factorization
machine-based methods [44] and Markov Chains [15]. In recent years the advances of
deep learning also led to the deployment of many deep sequential recommendation models
including CNN-based models [50, 67], RNN-based models [18, 65| and self-attention
based models [10, 24, 49]. SASRec [24] and BERT4Rec [49] both utilize the transformer
architecture [53] to model correlations among context information in SR. Recently, many
works focused on using contrastive self-supervised learning (SSL) to enhance the mutual
information between positive samples while increasing the discrimination of negatives [38,
41, 51, 63, 73|.

7.2.2. User Intent for Recommendation

In recent times an increasing body of work studied users’ intents for improving sequential
recommendations [29, 30|. Works in session-based recommendation learn different pur-
chase purposes via a mixture-channel purpose routing network [57], use a multi-intent
translation graph neural network to mine user intents [35] or employ a dual-intent net-
work to recommend new items [22]. Work in |71] proposes an attention mixture network
based on user intents to achieve multi-level reasoning over item transitions. Another
area of research focuses on understanding the sequential patterns in users’ interaction
behaviors over longer periods. DSSRec [36] introduces a seq2seq training strategy that
utilizes multiple future interactions as supervision and incorporates an intent variable
derived from both the user’s past and future behavior sequences. In ICLRec [7] user in-
tents are represented by latent variables and learned via clustering. The learned intents
are leveraged into SR models via contrastive SSL to maximize the agreement between
the representation of a sequence and its corresponding intent.

7.2.3. Temporal Information, Repeated Consumption

Time-sensitive recommendation considers the temporal information of item interactions
as context features or models temporal decay effects of historical interactions via point
processes. In TimeSVD++ [62], timestamps are divided into bins and combined with a
collaborative-filtering framework. In tensor factorization methods time is viewed as an
extra dimension in the user-item interaction matrix [5, 25, 64]. Other works focus on
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capturing trends and user-evolving patterns via attention-based temporal modules [8, 9,
43, 66]. Li et al. [31] extend SASRec by modeling the user-specific time intervals in the
item sequence. Recently, TGSRec [11]| designs a continuous-time bipartite graph, which
captures temporal dynamics within the sequential patterns of user-item interactions.
Another line of work applies the Hawkes Process framework [14] to model the temporal
decay effects of historical interactions |6, 74|, which also increases the capability of the
model to predict repeating item interactions [4, 19, 54, 55].

Different from previous works, we not only leverage that repeated interactions occur at
intent levels but also show that incorporating personal user information is crucial for
learning temporal dynamics. Additionally, our model addresses the gaps in the current
understanding of user intents, especially in terms of capturing repeated and periodic pat-
terns, modeling user intents through a hypergraph and soft clustering techniques based
on user session information, which significantly enhances personalized recommendation
performance.

7.3. Preliminaries
7.3.1. Problem Definition and Notations

In sequential interaction scenarios, the observed user-item interaction data is represented
by a set of tuples {(u,v,t)}, indicating that user u € U interacted with item v € V at
timestamp t. The interactions are sorted chronologically to form a user’s interaction
sequence I! = [(v1,t1), (va,t2) ..., (Un,tn)], where n is the number of interactions of
user v until timestamp ¢. Based on the varying time intervals between interactions, the
sequence S,, can be divided into subsequences (or sessions) whenever the time interval
between two interactions exceeds a threshold § (e. g., a day or hour). The resulting session
interaction sequence can be represented as .S, = [s}, s}, ..., s}'|, where s}' represents the I-
th interaction subsequence of user u containing items from V. The objective of sequential
recommendation is to predict the item from the item set V that the user u is most likely
to interact with at a given timestamp ¢, given their sequence S,,.

7.3.2. Hawkes Processes for Sequential Modeling

A temporal point process is a stochastic process consisting of discrete events localized
in the continuous-time domain. In sequential recommendation, the times at which a
user interacts with a specific item can be represented as a series of historical events
H; = [t1,ta,...,ty]. To model the time of the next event based on previous events, a
conditional intensity function A(¢|Hy) is introduced. This function represents a stochastic
model for the occurrence of the next event given all previous event times and thereby,
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affects the characteristics of the temporal point process. In Hawkes Processes [14], the
intensity function takes the form of

A(t) = ABase + 0 Y _p(t — t), (7.1)

t;<t

where Apgse represents the base intensity and each historical event has a self-exciting
effect on the current intensity controlled by the triggering kernel ¢ which determines
how each past event boosts the event intensity over time. The parameter o determines
the degree of excitation. In the context of sequential recommendation, the base intensity
represents the user’s basic interest in a target item, and the self-exciting term indicates
the cumulative impact of historical interactions on the user’s interest over time.

7.4. Proposed Method (HyperHawkes)

As illustrated in Figure 7.3 our HyperHawkes model consists of several major compo-
nents, including the intent-based global item graph, and a hypergraph-based aggregation
layer to generate intent-based item representations for the soft clustering component.
The clustered intent-based item representations serve as inputs to the temporal module,
which captures users’ long-term interests. To model short-term interest we employ an
attention-mixture network and combine both long-term and short-term signals in the
final prediction layer. In the following, we will detail each component.

7.4.1. Intent-based Hypergraph Network

As user intents are latent by definition and hence are difficult to extract, we propose
to induce structural bias via hypergraph modeling to support the underlying soft clus-
tering process to find useful intent representations. Compared to a simple graph with
an adjacency matrix reflecting the pairwise relationship between two nodes, hyperedges
in hypergaphs can connect more than two nodes and are therefore suitable to model
user intents, since item interactions on an intent level naturally comprise a set of items.
We assume that in each user session, the user interacts with the system based on one or
more intents. To build our intent-based global item hypergraph G = (V, £) with € = {¢g;}
being the set of hyperedges, we apply the following procedure: First, we extract data-
driven user intents as frequently occurring item sets across all training user sessions with
a length >= 2 via the FP-Max algorithm [13], where the minimum support is set to .
The threshold parameter ~ filters for reliable user intents and drops noisy intents not
supported by many other user sessions [38]. For each of the extracted intents, we connect
all the corresponding items via a hyperedge €; € £ to build our global hypergraph. Each
hyperedge ¢; has a weight w; attached, indicating the frequency of the extracted intent
in the dataset.
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Figure 7.3.: Overall architecture of HyperHawkes: In the E-step of the EM algorithm,

our approach extracts latent intent representations via soft clustering of hypergraph-

based item embeddings. In the M-step, we compute long-term user preference scores via

Hawkes Processes based on the user base excitation from an attentive FISM and self-

exciting effects of intents. We fuse short-term scores from the attention-mixture network
and the long-term scores to get the preference score of the user for an item.

To generate intent-based global item representations we design a simple hypergraph
aggregation layer. For the item v;’s base embedding Xgo), we map its corresponding
identifier into a dense embedding vector h,, € RY, where d indicates the dimension.
To aggregate information from neighboring nodes we employ the following hypergraph

convolution with symmetric normalization in our HGCN component:
XD = p'"HWB'H' X, (7.2)

where H is the incidence matrix, W is the diagonal hyperedge weight matrix, and D
and B are the corresponding degree matrices. Compared to the hypergraph convolution
presented in [3] we do not make use of learnable weights and a non-linear activation
function, since these components are not essential for recommender systems [59, 61]. To
combine node embeddings over multiple layers and increase the receptive field of a node
we average the node embeddings over L layers to get the final intent-based hypergraph
item representations:

X0 = ——3"XI (7.3)
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7.4.2. Intent Representation Learning

On the user interaction sequence level, it is easily observed that user sessions exhibit
multiple, dynamically shifting intents, where items can also belong to more than one
specific intent alone |7, 48]|. Additionally, these intents are not confined solely to indi-
vidual sessions but are also prevalent among users with similar preferences. Therefore,
directly utilizing session representation distributions for intent representations will result
in a loss of information. To mitigate this, we introduce a soft clustering component to
disentangle latent intents and effectively cluster items to intents.

For our soft clustering component we adopt a soft version of the Lloyd’s k-means algo-
rithm [58]. Let x; represent the intent-based hypergraph representation X§-L) of item v;
and p, represent the center of intent cluster k. The variable rj; denotes the probability
to which item v; is assigned to intent cluster k. In the standard k-means algorithm, this
assignment is binary, but we relax it to allow fractional values such that >, rj;, =1 for
all j. Specifically, we define

- exp(—B|x; — pll)

2 pexp(=Blx; — )’
which provides a soft-min assignment of each point to the cluster centers based on dis-
tance. We use negative cosine similarity as a distance norm || - ||. Here, § is an inverse-
temperature hyperparameter; taking § — oo recovers the standard k-means assignment.
The intent cluster centers can be optimized via an iterative process similar to the tradi-
tional k-means updates by alternately setting

(7.4)

Zj TjkX;j
pp = 2L g =1, K (7.5)
Zj Tik
rin = xp(=Blx; —pl) L,...,K, j=1,....n (7.6)

>rexp(—=Blx; — pell)

These iterations converge to a fixed point where p remains unchanged between successive
updates. Thus, we have soft intent cluster assignments for each item p; € P correspond-
ing to probabilities that item v; belongs to one of the intent clusters K. This distribution
p; serves as the latent intent representation of item v;.

Since the intent representations p; € P are latent by definition we face the issue that
without the cluster representations, we cannot estimate our model parameters # and
without € we are not able to find a result for the soft cluster assignment probabilities P.
It has been shown that a generalized Expectation-Maximization (EM) framework can
resolve this situation |7, 34]. In its basic idea, EM starts with an initial guess of 6 and
estimates the expected values of our cluster assignments P in the E-step. In the M-step
we maximize the objective w.r.t. the model parameters 6 given the expected values of
P. These steps are repeated until the likelihood cannot increase anymore. For detailed
derivations of the EM framework under the sequential recommendation scenario we refer
to |7, 34].
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7.4.3. Repeated Long-term Intent Consumption

We employ Hawkes Processes to model the temporal dynamics of long-term interactions
on intent level. As defined in Equation 7.1 Apgse reflects the long-term base interest of
a user in a specific item at a given point in time ¢, whereas the second part accounts for
the self-exciting effects A, and can capture repeated intent behaviors. We detail these
two components in the following.

User Base Preference

Users often have diverse or even contrastive preferences (e.g., romantic and horror
movies). Hence, using a single embedding vector to represent the long-term user interest
is a limiting factor [60]. Previous works mitigate this issue by generating a global and
non-causal representation of each user interaction sequence. Previous works [23, 33| built
the preference representation of a user for an interacted item by a uniform aggregation
of the representation of the other items in the interaction sequence. In our approach, we
incorporate an attentive user representation aggregation (AURA) to compute the basic
strength of the Hawkes Process p which computes user representations flexibly based on
the current target item representation h,:

exp(h}-hv) h
Zjlelu\{v} exp(h},hv) °
where h,, € R? defines the latent user representation and is fused with the long-term

preference of user u for item v which is a weighted aggregation of the item representations
in the user interaction sequence I,.

ABase(u,v) = hy, + (7.7)

jelu\{v}

Intent Excitation Learning

The trigger kernel of the intensity function in the Hawkes Process captures the changing
excitation over time. Our goal is to leverage the time dynamics of a user’s next intent and
how previous intents can trigger subsequent interactions. The Hawkes Process simulates
the time dynamics to predict the probability of the next event. In our approach, we con-
sider interaction events with the same underlying intent for self-excitation. Particularly,
we define intent excitation learning as follows:

)\Intent<u7 v, t) = O Z IK<pv7 pU/)(P(t - t/) (78)
(vrtr)elt,

where I denotes the indicator function which returns 1 if item v and v/ belong to the
same intent cluster and are in different user sessions, otherwise it returns 0. Since we
use a soft clustering approach to assign intent cluster probabilities to each item we use
the Kullback—Leibler divergence for finding items that correspond to the same intent
clusters:

,Ul

IK(pva pv’) = py - log <pv ) < 6, (79)
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where 0 is a parameter to limit the probability distribution distances per intent cluster
assignment. The cluster-related parameter aj weights the degree of excitation. The
temporal kernel function ¢(-) changes with the time interval At = ¢ — t/ between items
of the same intent and is defined as:

p(At) = (1 — mp) E(AL1/By) + mp N (At| g, o%), (7.10)

where we leverage an exponential distribution with intent-based parameter S to model
short-term intent repeat consumption behavior, which diminishes quickly over time. For
long-term repeated behavior we employ a normal distribution with mean p and standard
deviation o; which are also intent representation-based parameters. Using normal distri-
butions to simulate the user dynamic interest changes captures real-world scenarios like
item lifecycles and repeated item consumption behavior [19, 55|. The coefficient 7y, bal-
ances the two distributions. We learn the corresponding parameters of the distributions
Orntent = {k, Bk, pk, Ok, T} by a non-linear transformation of the user representation
h,, item representation h, and the intent representation p,:

@Intent = M(huHthpv)a (7'11)

where M(-) is implemented as a two-layer neural network and || denotes the vector
concatenation operation. Compared to previous approaches [19, 55| our distribution
parameters are not related to item identifiers, but to the corresponding item and intent
representations. Hence, our model learns the temporal dynamics on both, item and
intent level, and is able to leverage denser input signals, since the number of intents is
usually smaller than the number of items in a dataset. Additionally, the incorporation
of the user representation to compute the distribution parameters allows our model to
learn user-specific repetition behavior which can vary across intents. For instance, one
user buys a new phone including accessories every year whereas another user only buys
a new phone if the old one is broken, exhibiting a longer intent cycle phase.

We introduced the base intensity Apgse(u,v) as well as the long-term self-excitations
AIntent(w, v,t) on intent level. Therefore, we define our final long-term excitation for
item v;:

)\Z-(u, (R t) = )\Base(u, 'Ui) + )\]ntent(u, (B t) (7.12)

7.4.4. Attention Mixtures for Short-term User Interest

The aforementioned components model the users’ long-term interest and repeated con-
sumption behavior based on intents. However, a user intent might be exploratory, or the
interest may change dynamically during the session. To capture these short-term user
interest dynamics, we employ an attention mixture mechanism, following previous works
in session-based and sequential recommendation [52, 71|. Following [71] we generate
multi-level intent queries on the groups of last items in a user interaction sequence with
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length n by employing the deep sets operation [68] and applying linear transformations
per level m € M:

Qv =Wy ( Z{hvi}i:n,...,n—M—H) : (7.13)

These generated queries are then used to compute multi-head attention weights as:

QWQ(KWK)T>
Nz ;

where Q € R*? is the query matrix, K € R™*? represents the hidden representation of
each item in the sequence and W@ WX ¢ R4 are trainable parameters. We apply
L,-pooling [20] to pool the attention map and multiply the hidden representation of the
items in the sequence with the corresponding pooled attention weights to get the final
short-term sequence representation s,,.

ay, = softmax ( (7.14)

7.4.5. Prediction and Model Optimization

For the next-item prediction task we need to combine long-term and short-term interests
of users. We use the short-term sequence representation s, to compute the short-term
interest score §; = sLhUi, for item v;. Then, we add the long-term excitation score \;
and the short-term interest score g; to get the final preference score:

Yi = Ni + G- (7.15)

To learn the parameters of our recommendation model in the M-step of the EM algorithm
we adopt the pairwise ranking (BPR) loss for optimization as follows:

Ny
Lppr=—>_ Y 10g0Yui — yuj), (7.16)

ueU =1

where o denotes the sigmoid function and y,,; reflects the preference score of user u to a
randomly sampled negative item j ¢ I..

7.5. Experiments and Results

In this section, we provide the setup and results of extensive experiments to evaluate our
proposed model, where we compare HyperHawkes to various state-of-the-art models in
SR. Given our overall goal of investigating the impact of intent repeat-consumption and
fusing short- and long-term interests of users, we aim to answer the following research
questions:
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e RQ1: How does our proposed HyperHawkes compare to other state-of-the-art SR
methods on different datasets?

e RQ2: How do different components in HyperHawkes contribute to the performance?

e RQ3: How sensitive is HyperHawkes to different hyperparameter settings (e.g., L,
K)?

7.5.1. Experimental Setup
Datasets and Preprocessing

We conduct experiments on four representative datasets from the e-commerce, food de-
livery, and music domains [17, 27]. The Ta-Feng? dataset contains Chinese grocery store
transaction data from 2001. SMM? chronicles five months of user behavior from a large
online store [47]. For this industrial-scale dataset, we sample 20,000 random users to
maintain consistency with the other datasets. The DHRD (Delivery Hero Recommenda-
tion Dataset)? [2] comprises food delivery orders from three distinct cities, encompassing
different vendors and dishes; we use the data related to the city of Stockholm. Lastly, the
NowPlaying dataset includes music listening behavior of users based on Twitter data [70].
It is worth noting, that we do not provide evaluation for the widely used Amazon review
datasets [37], the MovieLens datasets®; or the Yelp review datasets®, since those datasets
are rating/review-based and therefore do not include repeated item consumptions, mak-
ing them unsuitable for the scenario of repeated intent modeling [17, 27].

Table 7.1.: Dataset statistics (after preprocessing): Number of users, items, interactions,
avg. sequence length and sparsity.

Dataset Ta-Feng SMM DHRD NowPlaying
|| 26,162 12,098 42,774 11,310
V| 15,642 22,167 20,883 15,905
# Interactions 0.78m  0.87m 0.52m 1.12m
Avg. length 29.99 71.97 12.30 86.39
Sparsity 99.80% 99.67%  99.94% 99.45%

We follow the preprocessing steps as in |7, 19| for the four datasets: We keep the 5-core
datasets, where users and items with less than 5 interactions are filtered out. Table 7.1
provides an overview of the datasets after preprocessing. To split the datasets, we follow
common practice in sequential recommendation and use interactions with the second
latest time for validation and interactions with the latest timestamp for testing.

*https://www.kaggle.com/datasets/chiranjivdas09/ta-feng-grocery-dataset
3https://disk.yandex.ru/d/fSEBIQYZusAAuw/datasets/data_smm
“https://github.com/deliveryhero/dh-reco-dataset
Shttps://grouplens.org/datasets/movielens

Shttps://www.yelp.com/dataset
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Following [17, 28, 69], we use the whole item set without negative sampling to rank
the predictions. We adopt HR@{5,20} (Hit Ratio) and NDCG@{5,20} (Normalized
Discounted Cumulative Gain) as evaluation metrics.

Baseline Methods

We compare HyperHawkes with the following representative baseline and state-of-the-art
methods for sequential recommendation:

Static models: BPR-MF [45] is a non-sequential model and characterizes the pairwise
interactions via matrix factorization.

Standard sequential € Transformer models: We include GRU4Rec [18], an RNN-based
method and SASRec [24] as transformer-based baseline method for SR.

Temporal & intent-based models: SLRC [55] is a widely used model and one of the first to
model item repeat consumption. It combines matrix factorization with a temporal point
process, effectively capturing short-term and product lifetime effects. RepeatNet [43]
proposes a novel repeat-explore mechanism to balance repeated and new item consump-
tion. For intent-based methods, we include HIDE [32] which models intents via session
hypergraphs. Other state-of-the-art approaches include ICLRec |7] and ICSRec [40],
where user intents are learned via clustering and Atten-Mixer |71], where intents are
modelled via a multi-level network.

Implementation Details

We rely on the RecBole framework [72| to implement our approach, using the provided
baseline models or re-implementing as needed. For all models, the embedding size is set
to 64 and the batch size to 512. We do not limit the number of training epochs, but
adopt an early-stopping strategy, which stops training after five consecutive rounds of
performance decrease on the validation set. Each baseline model is optimized according
to its corresponding hyperparameters.

For the optimization of HyperHawkes, we use Adam [26| with a learning rate of 0.001.
The number of layers L in the HGCN component and number of intent clusters K are
searched in the ranges of {1,2,3,4,5} and {2,4,...,128} respectively. For the attention
mixture network, we search the number of heads in the range of {1,2,4,8} and the
number of levels M in {1,2,...,10}. The threshold parameters v and J are set to
5e—4 and le—12. Our implementation is based on PyTorch 1.13.1 and Python 3.8.16,
and runs on a workstation with an AMD Ryzen 2950X, a GeForce RTX 2070, and 256
GB main memory. We publish the code and the pre-processed datasets on GitHub:
https://github.com/dbis-uibk/HyperHawkes.
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Table 7.2.: Model performance on all four datasets (£ standard deviation for Hyper-
Hawkes). All improvements of HyperHawkes over the second best model are significant
(paired t-test, p < .05), best results are in boldface, second-best results are underlined.

Dataset | Metric | BPR-MF GRU4Rec SASRec | SLRC RepeatNet HIDE ICLRec Atten-Mixer ICSRec | HyperHawkes | Improv.
HR@5 0.0699  0.0657 00812 | 0.0714 00432  0.0616 0.0746 0.0878 0.0784 | 0.110840.0015 | 26.19%

Lo Fong HR@20 00943 01215  0.1629 | 0.1284  0.1006  0.0853 0.1415 0.1645 0.1566 | 0.1984+0.0030 | 20.60%
a-tens NDCG@5 | 0.0541 0.0459  0.0528 | 0.0488  0.0307  0.0419 0.0527 0.0605 0.0519 | 0.0765+0.0014 | 26.44%

NDCG@20 | 0.0610  0.0616  0.0761 | 0.0650  0.0469  0.0485 0.0716 0.0823 0.0742 | 0.1015+0.0015 | 23.32%

HR@5 0.0542 0.0586  0.0876 | 0.1170 01291  0.0391 0.0526 0.0817 0.0686 | 0.14830.0010 | 14.87%

MM HR@20 01056  0.1323  0.1687 | 0.1853  0.1968  0.0781 0.1101 0.1638 0.1505 | 0.24440.0000 | 24.19%
NDCG@5 | 0.0373  0.0393  0.0606 | 0.0840 00972  0.0272 0.0357 0.0561 0.0427 | 0.10180.0002 | 4.73%

NDCG@20 | 0.0516 00602  0.0836 | 0.1037 01175  0.0383 0.0520 0.0793 0.0656 | 0.1294+0.0004 | 10.13%

HR@5 02156  0.1439 02065 | 02775 02702  0.1878 0.2554 0.2211 0.2129 | 0.2982+00055 | 7.45%

DHRD HR@20 0.3805 0.3214 04651 | 04158 03211  0.2625 0.4544 0.4295 04715 | 0.4830+0.0019 | 2.43%
NDCG@5 | 0.1488  0.0946  0.1303 | 02031  0.1983  0.1356 0.1740 0.1489 0.1323 | 0.2089+00031 | 2.85%

NDCG@20 | 0.1963  0.1450 02039 | 02430 02142  0.1572 0.2312 0.2084 0.2145 | 0.2621+0.0069 | 7.86%

HR@5 0.1272 0.0992 01229 | 0.1756 01765  0.1079 0.1654 0.1475 0.1375 | 0.1842+00011 | 4.36%

NowPlavine | ARG20 02730 02327 02715 | 03117 02996  0.1984 0.3135 0.3011 0.2931 | 0.3526+0.0006 | 12.47%
OWEIYIE | NDeG@s | 00879 0.0650  0.0802 | 0.1197 01217 0.0787 0.1156 0.1028 0.0929 | 0.1242+00007 | 2.05%

NDCG@20 | 0.1289 01025  0.1221 | 01589  0.1581  0.1042 0.1574 0.1462 0.1368 | 0.1713+0.0008 | 8.43%

7.5.2. Performance Comparison (RQ1)

In Table 7.2 we compare the performance of HyperHawkes and the baselines. Inter-
estingly, BPR-MF performs competitively with GRU4Rec and SASRec, contrasting the
general assumption that sequential models generally outperform non-sequential methods.
This displays the importance of learning temporal dynamics of repeated user behavior
and the incorporation of user intent.

Advanced time-sensitive sequential models often incorporate additional temporal sig-
nals to augment recommendation performance. For instance, TiSASRec integrates both
the item positions and time intervals in a sequence, yielding superior performance than
its transformer-based counterpart SASRec. We further observe that leveraging con-
trastive SSL in transformer-based architectures can improve performance, as exhibited
by ICLRec which optimizes sequence representations via contrastive SSL at the user
intent level. Also, the other intent-based method Atten-Mixer shows significant perfor-
mance gains over standard sequential models. Among the baseline methods, SLRC and
RepeatNet exhibit improved performance even over more sophisticated temporal and
intent-based models, underpinning their robustness in recommendation tasks and their
ability to model item repeat consumption.

HyperHawkes triumphs over all other methods across all datasets, marking a significant
advancement. The average improvements compared with the best baseline per dataset
range from 2.43% to 24.19% in HR@20 and from 7.86% to 23.32% in NDCG@20. We
attribute this increase in performance to the ability of our approach to effectively model
long-term intent repeat behavior and short-term user interest, which we show in detail
in our ablation study.
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In terms of efficiency and model complexity, we report the training time per epoch on
the Ta-Feng dataset as a practical proxy for model complexity. Intent-based models
like HIDE, ICLRec, Atten-Mixer and ICSRec require 2231.63, 254.21, 13.10 and 174.17
seconds/epoch, respectively. SLRC and RepeatNet, focusing on repeat consumption,
need 13.31s and 29.64s. HyperHawkes takes 27.75s per epoch on training and therefore, is
more efficient than most of the other sequential models, while substantially outperforming
these models in recommendation performance. A similar trend in model complexity is
also seen for the other datasets.

7.5.3. Ablation Study (RQ2)

Table 7.3.: Ablation study of HyperHawkes. The symbol | indicates a performance drop
of more than 10%, ND=NDCG.

Ta-Feng NowPlaying
HR@20 ND@20 HR@20 NDQ20

(A) w/o LT-SINE  0.1632] 0.0842) 0.3331  0.1637
(B) w/o LT-UE  0.1818  0.0911} 0.3241  0.1570
(C) w/o HGCN  0.1901  0.0969  0.3145] 0.1544]
(D) w/o SC 0.1732) 0.0867, 0.3377  0.1666
(E)

(

Model

E) only ST-ATM  0.1668) 0.0841] 0.2954] 0.1451]
F) w/o ST-ATM  0.0914] 0.0558) 0.3314  0.1625

HyperHawkes 0.1984 0.1015 0.3526 0.1713

HyperHawkes contains several components: a hypergraph-based graph convolutional net-
work (HGCN), soft clustering (SC), user base interest (LT-UE), intent excitation learning
(LT-SINE), and a short-term attention mixture network (ST-ATM). To verify the effec-
tiveness of each component, we conduct an ablation study on two datasets and show the
results in Table 7.3. The Ta-Feng and NowPlaying datasets were chosen due to their
different domains and characteristics in terms of repeat consumption (e. g., e-commerce
vs. music streaming). From (A) and (B) we can see the impact of different compo-
nents in the Hawkes Process for modeling temporal dynamics. Eliminating the intent
excitation learning (A) or the user base preference (B), notably diminishes the perfor-
mance to a similar extent. This shows the importance of extracting latent intents and
modeling repeat behavior on the intent level compared to the item level only. We also
investigate the effect of our proposed hypergraph-based network in (C), where removing
the component also leads to a significant performance drop. This backs our assumption
that inducing structural bias through the HGCN supports the soft clustering process
and leads to more representative cluster/intent representations. Similar effects can be
observed when dropping the soft clustering component in (D) and using a standard
k-means instead, which showcases the benefit of disentangling user intents via soft prob-
ability distributions. Lastly, we explore the effects of the short-term attention mixture
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Figure 7.4.: Impact of hyper-parameters in HyperHawkes.

network. Relying only on the short-term component without any long-term effects (E)
results in a noticeable performance drop. Dropping the short-term component (F) shows
a substantial decline compared to the full model, reflecting the critical role of short-term
user behavior understanding. The incorporation of both short-term and long-term ef-
fects leads to the best overall performance. The ablation study results for the other two
datasets SMM and DHRD are consistent with these findings, but are not reported due
to space constraints.

7.5.4. Impact of Hyper-Parameters (RQ3)

In this section, we investigate the impact of different hyper-parameters. We focus on
the number of layers L in the HGCN and the number of intent clusters K, since these
hyper-parameters are related to the intent excitation learning, which has shown to have
the highest impact on the performance of the final model (see Section 7.5.3). Figure 7.4a
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shows the performance of our model with different settings of layers L on the Ta-Feng
and NowPlaying datasets. A higher number of layers in the hypergraph-based network
does not necessarily lead to an increase in performance due to oversmoothing, where
node representations converge to the same values. We can find a sweet spot layer setting
L of 3 (Ta-Feng) and 2 (NowPlaying).

Our main contribution lies in the temporal modeling of user intents, extracted by soft
clustering. This requires pre-defining the number of clusters K before training. Due to
dataset heterogeneity, K needs to be tuned to each dataset’s characteristics. Figure 7.4b
shows the performance differences with different cluster counts. The optimal setting
differs by dataset, with Ta-Feng performing best at 16 clusters and NowPlaying at 32
clusters.

7.6. Conclusion

We proposed HyperHawkes, a novel Hypergraph-based Hawkes Process model to compre-
hensively model temporal dynamics of user intents for generating personalized sequential
recommendations. We extract intent representations via soft clustering of hypergraph-
based item representations. Our model learns the long-term excitation of intents and
items via Hawkes Processes and models short-term interests of users via a custom at-
tention mixture component. The fused user preference scores from the long-term and
short-term components enable temporal and personalized recommendations. Cluster
discovery and learning temporal dynamics are alternately optimized under a generalized
EM framework. Our extensive experimental results on four datasets demonstrate the
effectiveness of HyperHawkes, outperforming all other state-of-the-art methods. The ab-
lation study showed that modeling repeat consumption is more important than focusing
on short-term interest shifts of users.
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Abstract

Music Emotion Recognition (MER) seeks to understand the complex emotional land-
scapes elicited by music, acknowledging music’s profound social and psychological roles
beyond traditional tasks such as genre classification or content similarity. MER relies
heavily on high-quality emotional annotations, which provide the foundation for training
models to recognize emotions. However, collecting these annotations is both complex
and costly, leading to limited availability of large-scale datasets for MER. Recent works
in MER for automatically extracting emotion aim to learn track representations in a su-
pervised manner. However, these approaches mainly utilize simpler emotion models due
to limited datasets or the lack of necessity of sophisticated emotion models and ignore
hidden inter-track relations, which are beneficial for a semi-supervised learning setting.
This paper proposes a novel approach to MER by constructing a multi-relational graph
that encapsulates different facets of music. We leverage Graph Neural Networks (GNNs)
to model intricate inter-track relationships and capture structurally induced representa-
tions from user data, such as listening histories, genres and tags. Our model, the Semi-
supervised Multi-relational Graph Neural Network for Emotion Recognition (SRGNN-
Emo), innovates by combining graph-based modeling with semi-supervised learning, us-
ing rich user data to extract nuanced emotional profiles from music tracks. Through
extensive experimentation, SRGNN-Emo achieves significant improvements in R? and
RMSE metrics for predicting the intensity of nine continuous emotions (GEMS), demon-
strating its superior capability in capturing and predicting complex emotional expressions
in music.
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8.1. Introduction

Music’s ability to express and evoke emotions is a universally acknowledged phenomenon,
transcending cultural and linguistic barriers. It plays a pivotal role in human experience,
offering a medium through which emotions can be articulated, shared, and understood.
This unique capacity of music to convey a wide range of emotional states makes it a
subject of considerable interest in the interdisciplinary fields of psychology, neuroscience,
and musicology [24, 54|. Particularly, Music Emotion Recognition (MER) is a com-
putational task aimed at automatically identifying the emotional expressions contained
within music or the emotions elicited in listeners by music [50]. MER researchers rely
on a collection of datasets, where the amount of annotated tracks per dataset is rather
small [3, 55]. This is unsurprising since collecting high-quality emotional annotations of
tracks is complex and expensive [41]. While small-scale datasets are valuable for MER
advancements [28], for music retrieval and recommendation tasks, it is inevitable to have
access to a large catalog of tracks annotated with emotion labels, especially in the context
of personalized music retrieval [52|. An alternative method for gathering emotional data
in music involves extracting emotions from user tags. These tags are readily accessible
and available on a large scale. However, they often contain noise and personal bias, and
they lack the depth and quality that set apart expert-annotated data. Such expert data
is typically collected through user studies informed by psychological principles [28, 33|.

There are several approaches to tackle MER aiming to tag tracks with corresponding
emotion labels or profiles. Textual information is one of the data type employed in as-
signments that incorporate emotion labels, as evidenced by numerous studies [21, 22, 53].
Specifically, when undertaking emotion recognition based on music data, lyrics frequently
serve as the primary source of input [12, 13|. A different body of research highlights the
significant role of acoustic features in emotion recognition tasks |16, 34, 51, 52|. This per-
spective sheds light on the complexity of musical emotion, suggesting that the emotional
content of music cannot be fully captured through lyrics alone. The recognition that both
modalities, textual and acoustic, play a critical role in the perception and interpretation
of musical emotions is well known in the scientific community [16, 38, 49].

Most of the aforementioned approaches perform classification for emotion labels per track
or employ basic or categorical emotion models (e. g., arousal and valence) in a supervised
learning setting, which often fail to capture the richness and variability of musical emo-
tions [13, 52|. In contrast, this work draws on a domain-specific model, specifically
devised to account for the richness of emotions induced by music [54]. Starting with 515
emotion terms, [54] successively eliminated those terms that were rarely used to describe
music-evoked emotions and retained a few dozen core emotion terms, titled GEMS for
Geneva Emotional Music Scale. GEMS is hierarchically organized in three second-order
and nine first-order factors as shown in Figure 8.1. These factors are: (1) vitality (power
and joyful activation), (2) sublimity (wonder, transcendence, tenderness, nostalgia, and
peacefulness), (3) unease (tension and sadness). An additional distinctive feature of the
GEMS is that it accounts not only for perceived emotion but also, and in particular,
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Figure 8.1.: Geneva Emotion Music Scale (GEMS) with 9 dimensions based on the factor
analysis in [54].

for induced emotions as was later shown by neuroimaging work [45]. Consequently a
MER approach based on this model can capitalize on a rich spectrum of music-specific
emotional information [2].

As mentioned previously, the number of tracks in MER datasets is limited due to the
scalability challenges associated with the annotation process. This limitation impacts
the ability of supervised learning approaches to generalize effectively across a vast track
catalog, as the availability of annotated data directly influences model performance.
Semi-supervised learning on the other hand allows us to effectively incorporate informa-
tion of unlabeled tracks as well as labeled ones in the learning process, leading to enriched
track embeddings for the final labeling task. Moreover, prior works often ignore user and
track meta-data which could be utilized to improve the learning process.

In this paper, we propose a novel framework employing a Semi-supervised Multi-
Relational Graph Neural Network for Emotion Recognition (SRGNN-Emo) for predict-
ing the emotion profiles of tracks. We define the emotion profile of a music track as the set
and intensity of emotions that the track evokes in listeners [25, 41]. Unlike traditional
MER approaches, our model advances by adopting a multi-target regression strategy,
alming to capture more accurately the broad spectrum of emotions sparked through mu-
sic. Building upon the premise that human listening behaviors encapsulate a wealth of
information about evoked emotions, we innovate by integrating semi-supervised learning
with human annotations and a multi-relational graph framework. This integration allows
us to exploit the rich, albeit underutilized data from user interactions, genres, and tags,
hypothesizing that such data, when structured into diverse graph formats and refined by
a semi-supervised learning framework induces valuable emotion-related information. Our
framework can predict emotional intensities across 9 dimensions, significantly enhancing
the emotional insights derived from track embeddings compared to traditional methods
that typically rely on fewer, music-nonspecific emotion dimensions such as valence and
arousal.
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Our approach not only aims to mitigate the limitations imposed by the scarcity of large,
annotated datasets but also introduces a novel perspective on utilizing multi-relational
graph structures to enrich track representations. To summarize, the main technical
contributions of our work are as follows:

e We propose a novel multi-relational graph structure, based on user interactions,
genres, and tags.

e We integrate a semi-supervised learning approach for multi-target regression into
the framework of GNNs.

e We use a high-quality dataset based on state-of-the-art psychological research into
music-evoked emotions for fine-grained MER [41].

e Extensive experiments show that our proposed model significantly outperforms
state-of-the-art competitors on the task of MER.

To ensure reproducibility, we will release the code of our experiments and model weights
on GitHub!.

8.2. Related Work and Background

8.2.1. Music Emotion Recognition

MER aims to understand and categorize emotions in music through computational
means. Key contributions to this field address the different facets of music and emo-
tion, proposing various methodologies for recognition and analysis [50]. [25] present a
comprehensive overview of MER, introducing a computational framework that gener-
alizes emotion recognition from categorical domains to a 2D space defined by valence
and arousal, facilitating novel emotion-based music retrieval and organization methods.
Other works |12, 34, 49, 53| emphasize the role of integrating lyrics, chord sequences, and
genre metadata alongside audio features, demonstrating how multifaceted approaches can
significantly enhance MER systems’ accuracy.

The development of MER has also been propelled by the creation of extensive datasets
and embeddings tailored for this purpose. For instance, the MuSe dataset [1]|, which
includes 90,000 tracks annotated with arousal, valence, and dominance values inferred
from tags. Moreover, works such as those by [4, 7, 9] have evaluated various audio
embeddings, including Jukebor and musicnn embeddings, for their effectiveness in MER

"https://github.com/dbis-uibk/SRGNN-Emo

114


https://github.com/dbis-uibk/SRGNN-Emo

8. Nuanced Music Emotion Recognition via SRGNN-Emo

tasks. Additionally, recent evaluations of state-of-the-art music audio embeddings have
been conducted using tasks like the MediaEval challenge series on Emotion and Theme
Recognition in Music [44] on the MTG-Jamendo mood/theme auto-tagging dataset [8|.

Advances in MER research have also been characterized by the development of novel fea-
tures and the design of sophisticated machine learning models. |[6] show the effectiveness
of using physiological signals, specifically EEG, to recognize emotions elicited by differ-
ent music genres, highlighting the potential of brain signals in providing insights into
emotional responses to music. [35] improve music emotion classification by introduc-
ing highly emotionally relevant audio features related with music performance expressive
techniques or musical texture. The application of deep learning techniques has shown
promising results in recognizing emotions from music, as seen in the work by [56]. They
extracted features from log Mel-spectrograms by multiple parallel convolutional blocks
and applied attention in combination with a sequence learning model for dynamic music
emotion prediction. Others propose to structure musical features from different modali-
ties (audio and lyrics) over a heterogeneous network to incorporate different modalities
in a unique space for MER [13].

Our proposed approach SRGNN-Emo innovates by leveraging semi-supervised learning
with user interaction data and metadata for nuanced emotional profiles, extending beyond
traditional supervised methods.

8.2.2. Semi-Supervised Node Representation Learning

Node representation learning is focused on creating simplified vector representations of
a graph’s nodes that reflect both their connections and features. Traditional methods
(without deep learning) are mostly based on random walks to examine the neighborhoods
around nodes [17, 36, 42].

Graph Neural Networks (GNNs) are neural architectures specifically tailored for graph-
structured data. GNNs learn meaningful node representations by iteratively aggregating
and transforming information from a node’s neighbors, effectively capturing complex re-
lational and structural dependencies in graphs [18, 27]. Since the introduction of Graph
Convolutional Networks (GCNs) |27, 47], a specific type of GNNs, more advanced tech-
niques for node embedding have been developed, including a layer sampling algorithm [18]
designed to work with large graphs by focusing on a set neighborhood of nodes.

Recently, we have observed a shift towards self-supervised contrastive approaches. These
methods distinguish between positive (similar neighborhood) and negative (far away in
the graph) examples to compute loss. Deep Graph Infomax (DGI) [48| enhances the
mutual information between individual nodes and the whole graph representations. [19]
introduce a method for learning representations from different viewpoints by contrasting
nearby neighbor encodings with those from a more extensive graph diffusion. However,
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because contrastive learning often requires a significant number of negative examples, it
can be challenging to scale for large graphs. An alternative proposed by [43] named
Bootstrapped Graph Latents (BGRL) avoids this issue by predicting alternative aug-
mentations of the input, eliminating the need for contrasting with negative samples.

Despite significant advances in node representation learning, relatively little attention
has been given to multi-relational graph neural networks and their application in specific
domains like MER. Existing works such as [40], who proposed relational graph convo-
lutional networks (R-GCNs) for knowledge graph completion, and [46], who explored
compositional embeddings for relationships, have made strides in handling complex rela-
tional structures. However, these approaches have not been widely explored within the
context of semi-supervised learning. Additionally, although semi-supervised node repre-
sentation learning has become increasingly popular in tasks such as node classification
and link prediction [18, 27], its application to emotion recognition tasks remains rare
and under-investigated [20].

In this paper, we present an innovative framework that aligns with recent trends towards
contrastive learning in GNNs but also extends them by specifically addressing the multi-
relational and semi-supervised nature of the problem space in MER.

8.3. Dataset

In this work, we will leverage high-quality data from psychology-informed user studies on
emotions evoked by music. We utilize the Emotion-to-Music Mapping Atlas (EMMA)?
database [41], which comprises 817 music tracks. These tracks were annotated in 2023
based on their emotional impact, as assessed using GEMS [54]. We focus on the GEMS-9
variant of this scale, which is a checklist version of the original 45-item GEMS that as-
sesses each dimension with one item only. Previous research has demonstrated emotion
profiles derived from the original GEMS and the GEMS-9 to be highly correlated [23].
Emotions induced by each track were rated on these dimensions by an average of 28.76
annotators. We are one of the first to leverage this information-rich dataset for MER
purposes, demonstrating the significant potential it offers for advancing research in this
field. To enhance the reliability of our analyses, we restrict our focus to tracks with
a higher interrater agreement, selecting those with an Intraclass Correlation Coefficient
(ICC) above 0.5, which indicates moderate reliability [41]. While a higher ICC thresh-
old would ensure even greater reliability, it would significantly reduce the dataset size,
thereby limiting the diversity and generalizability of the data. However, it is worth men-
tioning that the ICC across all tracks demonstrates good interrater agreement, with a
mean [CC value of 0.8.

’https://musemap-tools.uibk.ac.at/emma/
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As our goal is to design a model for large-scale emotion recognition in a semi-supervised
manner, we require a dataset containing rich information about the audio, but also rel-
evant meta-data. Therefore, we employ the Music4All-Onion [32] dataset. This dataset
enhances the Music4All [39] dataset by incorporating 26 additional audio, video, and
metadata characteristics for 109,269 music pieces. It also includes 252,984,396 listening
records from 119,140 Last.fm? users, enabling the use of user-item interactions. Intersect-
ing EMMA with the Music4All-Onion dataset leads to 509 tracks with available emotion
profiles, audio features, and meta information. Due to our hypothesis that human lis-
tening behavior in combination with track metadata encapsulates valuable information
about evoked emotions, we extract graph structures from user listening sessions, track
genres, and user tags as will be described in detail in Section 8.4.1.

For each track available in the Music4All-Onion dataset we use pre-trained instances of
musicnn 37|, MAEST [4] and Jukebox [14] to represent the audio signal. The musicnn
model is based on deep convolutional neural networks trained to classify music based
on its content [37]. The MAEST representations are based on spectrogram-based audio
transformers which employ patchout training on a supervised task [4]. Jukeboz is a
generative model for music that uses a deep neural network trained on a vast corpus
of tracks to understand and generate music [14].* These models were selected for their
music-specific design, which ensures a closer alignment with musical features like melody;,
harmony, and rhythm that are critical for emotion recognition [31].°

8.4. Proposed Method (SRGNN-Emo)

In this section, we introduce a novel framework leveraging a multi-relational graph struc-
ture and semi-supervised learning. Multi-relational graphs are complex data structures
that model different types of relations that correspond to different user data types in our
case (e.g., Figure 8.2). Our model is designed to extract emotional profiles from music
tracks by integrating rich user interaction data with diverse metadata and sophisticated
content data. Figure 8.2 provides an overview of our proposed approach, where each
module will be explained in the following.

Shttps://www.last.fm

4For MAEST, embeddings were extracted from transformer block 7 of the model, initialized with PaSST
weights and pre-trained on the Discogs20 dataset. For Jukeboz, embeddings were extracted from layer
36, with mean pooling applied across the layer’s output, following the methodology detailed in the
original work.

5This extended version of the dataset, including audio embeddings extracted from the described pre-
trained models (musicnn, MAEST, and Jukeboz), is made publicly available on https://zenodo.
org/records/15394646.
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Figure 8.2.: lllustration of SRGNN-Emo which constructs a multi-relational graph with
nodes representing tracks, and edges symbolizing connections based on sessions, genres,
or user tags shared among tracks. We use stochastic graph augmentations to generate
two distinct graph views, which are processed by a shared encoder to ensure robust and
invariant node representations in a self-supervised manner. The emotion-guided consis-
tency objective (Lpg) optimization aims to align unlabeled nodes with emotion profile
patterns of labeled nodes across augmented graph views. The learned node representa-
tions are then fed into a Multi-Layer Perceptron (MLP) Regressor to predict the emotion
profile of each track.

8.4.1. Multi-Relational Graph Construction

We aim to derive representations of tracks that encapsulate nuanced similarities between
music tracks, based on shared genres, commonality in listening sessions, and user-assigned
tags. Therefore, we construct a multi-relational graph G, focusing on tracks as nodes,
with edges representing different types of relationships such as sessions, genres, or tags
that connect these tracks. Specifically, nodes in our multi-relational graph are tracks
v € V, and an edge (v;,vj) € E is established between two tracks if they are part of the
same listening session by a user, share one or multiple genres, or have been tagged with
one or multiple identical tags by users. The strength of the connection, represented as
the edge weight eg), reflects the frequency of shared relationships r € R, such as the
number of common tags, genres, or sessions. We normalize the edge weights per relation
such that, for each track v and each relation r, the edge weights are symmetrically scaled

using the formula:
(r)
~(r) _ ei;

T Jdeg(vr) - des(oy)
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where deg(v) represents the degree of node v for relation r. This symmetric normalization
ensures that, for each track v and each relation r, the edge weights are adjusted based
on the degrees of both connected nodes and therefore mitigates the inherent popularity
bias of tracks.

8.4.2. Emotion-Based Graph Encoder

To learn node representations on this multi-relational graph G introduced before, we em-
ploy a weighted Relational Graph Convolutional Network (wR-GCN) encoder, which
adapts the GNN message-passing framework to handle the complexities of a multi-
relational graph [40] and additionally incorporates edge weights. The GNN message-
passing framework [15] enables nodes to exchange and integrate information with their
neighbors, iteratively refining their representations to capture the graph’s structural and
relational context. The general differentiable message passing is formulated as:

W o [ 5 g (100)) -
meM;

where hgl) e R represents the hidden state of node v; at the I-th layer, with d¥) being
the dimensionality of the layer’s representation. The incoming messages, gm(:,+), are
combined and processed through an activation function o(-), such as ReLU. M; is the
set of incoming messages for node v;, typically corresponding to the set of incoming edges.
The function g, (-,-) is often a neural network or a simple linear transformation [27].

This transformation has proven effective in accumulating and encoding features from
local, structured neighborhoods [27, 47]. For our multi-relational, weighted graph we
define a simple propagation model [40] for computing the forward-pass update of a node
v; and extend it with the usage of edge weights:

lJrl Z Z

’I‘GR]GNT

r D) (r
Rel) + winPel) | (8.2)

(2

where N represents the set of neighbors of node v; under relation r € R, and el(-;)

is the edge weight between nodes v; and v; for relation r. This equation intuitively
accumulates the transformed feature vectors of neighboring nodes through a weighted and
normalized sum. Unlike regular GCNs, we incorporate relation-specific transformations,
depending on the type and direction of the edge. Additionally, to ensure that the node’s
representation at layer [ + 1 is informed by its representation at layer [, we introduce a
self-connection under each relation type for each node.

Initially, h% = z,, representing the node features. We use the corresponding representa-
tions of the tracks (e.g., musicnn, MAEST or Jukebor) as the node features X € RV*F,
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where N is the number of nodes in the graph and F' the feature dimension. We de-
fine A(v,7) as a uniformly sampled neighborhood across all relations r € R to manage
memory and computation effectively [18].

8.4.3. Semi-Supervised Multi-Target Regression

Contrastive learning has shown to be a valuable paradigm for self-supervised learning
and consistency regulation in the context of GNNs |29, 43]. We employ this idea as the
grounding learning task for our graph-based model and extend it with a semi-supervised
loss in the process.

Given an input graph, we generate two distinct graph views through stochastic graph
augmentations. These augmentations involve randomly masking different node features
and dropping a different subset of edges per graph to introduce variability. The resulting
augmented graph views are denoted by G = (4, X) and G’ = (A, X'), where A and A’
represent the adjacency matrices of the augmented graphs, and X and X' denote the
feature matrices post-augmentation.

Representation Learning via Shared Encoder

To learn robust, low-dimensional node-level representations we employ a shared en-
coder strategy that learns consistent representations across different graph augmenta-
tions. Both augmented graph views are input into our shared wR-GCN encoder, de-
noted as fy : RVXN x RNXE 5 RNXD 4 Jearn low-dimensional node-level representa-
tions. The node-level representations obtained from the encoder for the two views are
fo(A, X) = Z € RV*D and fy(A', X') = Z' € RN*P | respectively.

To ensure the learned node representations are invariant to the augmentations, SRGNN-
Emo minimizes the cosine distance between the representations from the two differently
augmented views on a node-wise basis and is formalized as follows:

N

1 Zi- 7!
Lser = 27 (8.3)
o 1Zilll Z]]

In their experiments, [29] found that using a single shared encoder in combination with
subsequent supervisory signals was sufficient to prevent representation collapse, while
also offering the benefits of simplicity and efficiency.

Emotion-Guided Consistency Objective

While our framework effectively leverages self-supervised learning signals—patterns and
features extracted from unlabeled data without explicit supervision—through contrastive
learning, it has yet to incorporate the limited but accessible emotion profiles available
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for tracks. To leverage emotion label information effectively, we refine our method by
aligning them with emotion profile patterns. Starting with a set of labeled tracks with
known emotion profiles, we identify distinct emotion patterns through clustering, which
then serve as reference points (centroids) in the emotion profile space. Our goal is to
group the unlabeled tracks around these centroids, ensuring their predicted emotion
profiles remain consistent across differently augmented views of the graph. By doing so,
we aim to maximize the consistency and reliability of node assignments to these emotion
patterns, effectively bridging the gap between labeled and unlabeled tracks.

Given the set of labeled tracks, denoted as Vi, we apply a k-means clustering algorithm
to extract K distinct clusters, each representing a unique emotion pattern. The result
is a set of centroids C' = {c1,co,...,cx}, where each ¢, € RY™? corresponds to the
centroid of cluster k. These nine dimensions correspond to the emotional dimensions
defined by GEMS, which serve as the basis for clustering. For each unlabeled track v,
we compute the predicted emotion profile using a non-parametric weighted k-nearest
neighbors (k-NN) approach to generate pseudo-labels, formulated as:

; s s
i = 2 jenny ) Sim(Hi, H) - Y (8.4)
1 T . .
ZjeNNk(Hi) sim(H;, HJS)

where sim(+, ) computes the cosine similarity between two vectors, H S e RV*P and
VS € REX9 denote the support (labeled) node representations and the emotion profiles,
respectively and NNy (H;) denotes the set of Kpeighbors Nearest neighbors of H; in H S,

To enhance reliability, we restrict the k-NN predictions to only confident pseudo-labels
by measuring the distance between each pseudo-label and the centroids C. We retain
nodes whose predicted profile shows a similarity above a threshold p with at least one
centroid, forming the set V.., r. The emotion-guided consistency objective is then defined

as:
1 R
Lec=—— > MSE(p;p)), (8.5)
H/conf’ vV,
i conf

where MSE(-,-) denotes the mean squared error loss function and p; and p; are the
confident predicted emotion profiles for track v; from the augmented graphs. Using a
high value for p prioritizes confident pseudo-labels in the objective function, which has
been shown to effectively mitigate confirmation bias [5, 29].

This approach not only incorporates label information to guide the learning of emotion
profile patterns but also ensures that predictions for unlabeled tracks are made with
higher confidence, thereby improving the overall model’s ability to generalize from labeled
to unlabeled data in the context of a multi-target regression task.
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Emotion Profile Prediction

After learning robust node representations through the shared wR-GCN encoder and
ensuring consistency across augmented graph views, the final step of SRGNN-Emo is to
predict the emotion profile for each music track. To achieve this, we utilize a Multi-
Layer Perceptron (MLP) R(-) that takes as input the averaged node representations
from the two augmented views and outputs the emotion profile per node/track. The MLP
consists of three fully connected layers, each followed by a LeakyReLU activation function
and a dropout layer to prevent overfitting. The output of the MLP is a vector y; €
R, representing the predicted emotion intensities across the nine emotion categories.
To train the model to predict nine continuous emotion dimensions, we employ a mean
squared error (MSE) loss as our supervised objective:

1 L1 o
ESuper = N E; §||y2 - Y1” (86)
1=

8.4.4. Final Objective
The combined objective function for SRGNN-Emo is expressed as:
L = alser + BACEG + ESuper (87>

where o and 8 are coefficients that control the contribution of the self-supervised loss
Lself and the emotion-guided loss Lig to the overall training objective, respectively. The
supervised loss Lgyper ensures the model effectively predicts continuous emotion profiles
for labeled nodes.

8.5. Experiments and Results

We compare SRGNN-Emo against traditional and graph-based baselines for MER. In
the following, we detail our experimental setup, including data preparation, model con-
figurations, and metrics used for evaluation.

8.5.1. Baselines

We systematically compare our proposed model against a diverse array of baseline ap-
proaches, spanning traditional machine learning models, graph-based approaches, and a
novel custom convolutional neural network, each harnessing unique feature representa-
tions from music analysis frameworks.

We begin with traditional machine learning models including Logistic Regression (LR)
and Support Vector Regression (SVR). Additionally, Co-training Regression (COREG) [57]
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is utilized, enhancing generalization by co-training two regressors on separate views. A
Multilayer Perceptron (MLP) model with three layers (the same as in our SRGNN-Emo
model) serves a dual purpose: it depicts a baseline on its own and acts as the regres-
sor for semi-supervised learning task in the graph-based models (with the learned node
representations as input).

The graph-based models are crucial for understanding the relational structure of music
data. This category includes Label Propagation (LP) [58| for emphasizing data cluster-
ing, Graph Convolutional Network (GCN) [27] and Graph Attention Network (GAT) [47]
for integrating node features with the graph topology, Deep Graph Infomax (DGI) [48]
focusing on mutual information maximization, and Bootstrapped Graph Latent Repre-
sentation (BGRL) [43| aimed at enhancing robustness through consistent node repre-
sentation across views. MRLGCN [13] structures musical features over a heterogeneous
network and learns a multi-modal representation using a GNN with features extracted
from audio and lyrics for MER.

Completing our set of baselines, we designed a fully supervised, content-based, end-to-end
method named DOMR+ for Density-based Oversampling for Multivariate Regression
with data transformation. The DOMR+ method consists of two components: a Fully
Convolutional Network model and a pre-processing stage. The model employs multiple
convolutional and subsampling layers without dense layers. To address the challenges of
data scarcity and imbalance in the labels, the pre-processing stage integrates oversam-
pling with data transformation techniques. Candidate data points for oversampling are
identified using kernel density estimation (KDE), which determines the rarity of data
points based on their density within the feature space. Instead of directly oversampling
these candidates, the method applies class-preserving audio transformations, which mini-
mally transforms the original audio while retaining its fundamental properties, including
filtering, equalizing, noise addition, scale changes (pitch shifting and time stretching),
distortions, quantization, dynamic compression, format encoding/decoding (e.g., MP3,
GSM) and reverberation [30]. These transformations ensure that the augmented data
remain representative of the underlying distribution, enhancing the model’s ability to
generalize, while avoiding the risk of overfitting caused by repetitive synthetic samples.

8.5.2. Experimental Setup

We preprocessed the target variables representing emotions by applying z-normalization,
which ensures each variable has a mean of 0 and a standard deviation of 1. We employed
stratified 10-fold cross-validation based on binning to validate the performance of our
models comprehensively.

For performance evaluation, we rely on two metrics: Root Mean Square Error (RMSE)

and coefficient of determination (R?). RMSE measures the average magnitude of the
errors between the predicted and actual values. A lower RMSE indicates better perfor-
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Rep. musicnn MAEST Jukebox

Model RMSE] (+SE)  R2f (4SE)  RMSE/| (4SE)  R2f (+SE)  RMSE} (4SE)  R21 (4SE)

LR 0.8443 (£0.02)  0.2470 (+0.05)  1.3821 (£0.06) -1.0731 (+0.22) 1.0301 (+0.04) -0.1403 (%0.09)
SVR 0.8188 (+£0.01)  0.2968 (+0.01)  0.7862 (+£0.01)  0.3504 (+0.02)  0.9802 (£0.02)  0.0163 (+0.01)
COREG 0.8742 (+£0.02)  0.1140 (£0.05)  0.8613 (£0.02)  0.1346 (+0.08)  0.8680 (£0.02)  0.1244 (+0.05)
MLP 0.8132 (£0.02)  0.3106 (+0.02)  0.8938 (£0.03)  0.1576 (+0.08)  0.8579 (4£0.02)  0.2193 (£0.06)
LPf 0.9488 (£0.03)  0.0806 (£0.01)  0.9488 (£0.03)  0.0806 (£0.01)  0.9488 (+0.03)  0.0806 (£0.01)
GCN 0.8071 (£0.02)  0.3158 (£0.04)  0.7781 (£0.02)  0.3568 (+0.05)  0.7492 (£0.04)  0.4039 (+0.05)
GAT 0.8167 (£0.03)  0.2992 (£0.07)  0.7856 (£0.02)  0.3476 (£0.05)  0.7567 (£0.02)  0.3926 (£0.03)
DGI 0.8042 (£0.02)  0.3184 (£0.06)  0.7749 (+£0.01)  0.3644 (+0.06)  0.7464 (£0.02)  0.4103 (+0.04)
BGRL 0.8019 (+0.02)  0.3253 (£0.05)  0.7939 (£0.02)  0.3370 (£0.07)  0.7905 (£0.02)  0.3843 (+0.05)
MRLGCN 0.8592 (£0.04)  0.2600 (£0.04)  0.7868 (£0.03)  0.3648 (+0.05)  0.7932 (£0.03)  0.3651 (+0.05)
DOMR-+1 0.8291 (+0.03)  0.2777 (£0.08)  0.8291 (£0.03)  0.2777 (+0.08)  0.8291 (40.03)  0.2777 (£0.08)
SRGNN-Emo 0.7973 (+0.03) 0.3305 (+0.06) 0.7707 (+0.01) 0.3724 (+0.05) 0.7411 (+£0.02) 0.4180 (+0.04)

Table 8.1.: Multi-target regression performance for different models across three represen-

tation types. The best results are in boldface and the second-best results are underlined.

All improvements of SRGNN-Emo compared to the second-best performing model are

significant (Wilcoxon signed-rank test, p < .05). Models marked with T do not use any
underlying track representation.

mance. R?, on the other hand, is a goodness-of-fit measure for regression models and
assesses the proportion of variance in the dependent variable that is predictable from the
independent variables, with values closer to 1 indicating better model fit.

All baseline models are carefully tuned via grid search, optimizing hyperparameters
including (but not limited to) number of layers € {1,...,5}, number of neighbors
€ {5,10,...,50}, learning rate, dropout and regularization strength, depending on the
respective model requirements. For our proposed model, SRGNN-Emo, the Adam opti-
mizer [26] is used, with the learning rate set to 0.001 and Lo regularization set to 107°.
We tuned its hyperparameters within specific ranges: the number of layers L in the wR-
GCN was set between 1 to 5, the number of neighbors was chosen from between 5 and 50,
and the a and 8 weight parameters were logarithmically adjusted within the range of 0.1
to 10. Additionally, dropout rates were varied between 0.0 and 0.5 to prevent overfitting.
The number of clusters K and nearest-neighbors Ky eighbors is searched in {2,4,6,...,16}
and {5, 10, 20,40}, correspondingly.

8.5.3. Performance Analysis

Table 8.1 summarizes the multi-target regression performance of various models, in-
cluding traditional machine learning methods, graph-based models, and our proposed
SRGNN-Emo framework. The results demonstrate that SRGNN-Emo achieves the low-
est RMSE and highest R? score, indicating superior prediction performance (statistically
significant) and model fit, respectively.
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Model wond tran tend nost peace joya power sadn tens GEMS-9
MLP (musicnn) 0.9312 0.9653 0.7330 0.8936  0.6466 0.8099  0.8007 0.7711 0.7675  0.8132
DGI (Jukebox) 0.9059 0.9425 0.6647 0.8094 0.6088 0.7162 0.7511 0.6627 0.6569  0.7464
SRGNN-Emo (Jukebox) 0.8972 0.9345 0.6518 0.8026 0.6162 0.6930 0.7425 0.6690 0.6630 0.7411
(A) w/o Lgar 0.9177 0.9384 0.6532 0.8192 0.6086 0.7050 0.7653 0.6713 0.6829  0.7513
(B) w/o Lrg 0.9041 0.9387 0.6636 0.8245 0.6110 0.7082 0.7650 0.6845 0.6779  0.7530
(C) w/o Lsuper 1.2372  1.0996 1.2454 1.2210 1.3543 1.3329 1.2424  1.2907 1.2339 1.2508

Table 8.2.: RMSE scores of models (using the best-performing representations from Ta-

ble 8.1) across multiple emotion targets. Abbreviations of emotion dimensions corre-

spond to Wonder, Transcendence, Tenderness, Nostalgia, Peacefulness, Joyful Activa-

tion, Power, Sadness, and Tension. All improvements of the best-performing models

(boldface) are statistically significant compared to the second-best models (underline)
per emotion dimension (Wilcoxon signed-rank test, p < .05).

Representing traditional machine learning approaches LR, SVR, and COREG show rela-
tively higher RMSE values, indicating lower predictive performance. Their R? values are
also significantly lower, confirming less variance explained by these models. The baseline
MLP shows competitive performance when relying on musicnn representations, but is
outperformed by graph-based approaches with the other two representations (MAEST
and Jukeboz).

Among the graph-based approaches, DGI and BGRL show competitive performance
with the lowest RMSE and highest R? among the graph-based models for two different
representations, ranked second after our SRGNN-Emo. GCN and GAT also demonstrate
robust performances but are slightly outperformed by DGI or BGRL, depending on the
underlying representation. Our model SRGNN-Emo outperforms all baseline models and
indicates a statistically significant improvement in terms of RMSE and R? compared to

the second-best models, DGI and BGRL.

8.5.4. Ablation Study

The ablation study, detailed in Table 8.2, assesses the impact of individual components
of SRGNN-Emo by removing Lseir, Lrg, and Lguper separately. The results illustrate
the essential roles of these components in the model’s overall performance. Removing
the self-supervised loss (Lgeif) slightly increases the RMSE across 5 out of 9 emotional
dimensions, suggesting that this component helps in stabilizing the learning process by
enforcing consistent node representations across different graph augmentations. The
removal of the emotion-guided consistency objective ( Lgg) leads to a noticeable degra-
dation in performance across 8 out of 9 emotional dimensions. This confirms that Lrg
plays a crucial role in refining node embeddings by aligning them more closely with
known emotion profile patterns, thus enhancing the model’s ability to generalize from
labeled to unlabeled data. Omitting the supervised loss (Lguper) results in significant per-
formance drops across all emotional dimensions, with RMSE scores rising substantially.
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Effect of Number of Layers L (musicnn) Effect of Number of Emotion Profile Clusters K (musicnn)
0.812
RMSE (1) | 0.330 RMSE (4) Lo.330
08207 R2 (1) R2 (1)
0.810
F0.325
0.815 | 0.320 0.808 [ 0325
L o315 0.806 0320
2 t0.310 Z 0.804
L r0.315
0.805 1 0305 0.802
t 0.300 0.800 4
f0.310
0.800 L 0.205
0.798
r0.290 0.305
0 1 2 3 4 5 2 4 6 8 10 12 14 16
L K

(a) Performance impact of different number of  (b) Performance impact of different number of
layers L in our wR-GCN component. emotion profile clusters K.

Figure 8.3.: Impact of hyperparameters on model performance using musicnn represen-
tations.

This drastic decline highlights the importance of direct supervision in guiding the net-
work towards accurate emotion profile predictions. Interestingly, while DGI outperforms
SRGNN-Emo in two emotional dimensions—Sadness and Tension—it does not achieve
consistently better performance across all emotion dimensions, indicating limitations in
its ability to fully capture the emotional variations present in the dataset.

8.5.5. Impact of Hyper-Parameters

In this section, we investigate the impact of different hyper-parameters. We focus on the
number of layers L in the wR-GCN and the number of emotion profile clusters K, since
these hyper-parameters are related to various parts of the model architecture. Figure 8.3a
shows the performance of our model with different settings of layers L on the described
dataset using musicnn representations. A higher number of layers in the multi-relational
network does not necessarily lead to an increase in performance due to the issue of over-
smoothing, where node representations converge to the same values [11, 27|. For our
dataset, we can find a sweet spot layer setting L of 2.

Figure 8.3b shows the performance differences between runs relying on musicnn represen-
tations with a different number of emotion profile clusters. The best-performing setting
for K is 10 clusters, which aligns with previous analyses of emotion profiles in GEMS-9
by [10].
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Model Performance with Varying Training Data Ratios (jukebox)
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Figure 8.4.: Model performances on different fractions of training data using Jukebox
representations.

8.5.6. Data Efficacy Study

In this section, we assess the efficacy of our proposed SRGNN-Emo framework under vary-
ing levels of training data availability, investigating its performance in semi-supervised
settings where labeled data is sparse. Figure 8.4 illustrates the model performances using
different ratios of the training data, comparing the SRGNN-Emo framework with base-
line models, including the baseline MLP and the semi-supervised graph-based approach
DGI.

The results show that as the amount of available labeled data increases, the performance
of the MLP model significantly improves, exhibiting lower RMSE and higher R? values.
This highlights its heavy reliance on large amounts of labeled data for generalization.
In contrast, the semi-supervised models demonstrate superior performance even with
minimal labeled data. Specifically, our SRGNN-Emo maintains competitive RMSE scores
and high R? values across various fractions of the training data, showing only a gradual
decline in prediction accuracy as the training set size reduces. This indicates the model’s
robustness in scenarios with limited labeled data.
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8.6. Conclusion

This work introduced SRGNN-Emo, a novel Semi-supervised Multi-relational Graph Neu-
ral Network designed for nuanced MER trained on EMMA a database with exceptionally
rigorous annotations based on the domain-specific GEMS emotion model. By integrating
semi-supervised learning with multi-relational graph structures and leveraging rich user
interaction data, SRGNN-Emo effectively outperforms baseline models in capturing the
complex emotional responses evoked by music. While our study leverages the GEMS
model to capture a wide range of music-evoked emotions, our framework remains in-
herently flexible and can be adapted to alternative emotion models as future work. As
a contribution, we enrich the existing Music4All-Onion dataset [32] by adding emotion
labels generated from our trained model, resulting in a fully labeled large-scale emotion-
based dataset with 109,269 tracks. This enhanced dataset enables various applications
such as improved music retrieval, enhanced recommendation systems, and other related
tasks.
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