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Abstract

Twitter, a popular microblogging platform, is often targeted by hackers
who take over accounts in order to send spam. This triggers a change
not only in the affected accounts behavior itself, but also often in the
network of users connected to it. This thesis analyzes the possibilities of
gathering information about hacked Twitter accounts by searching for
messages that contain suggestions of an account being hacked. We then
analyze the response of the alleged hack victims to determine how often
such users respond to hints from their environment. Additionally, a
qualitative analysis shows the different types of conversations that have
been discovered this way.





Zusammenfassung

Twitter ist eine beliebte Microblogging-Plattform und wird bedingt durch
seinen Erfolg auch oft das Ziel von Hackern, die über manipulierte Ac-
counts Spam verschicken. Wenn Benutzeraccounts gehackt werden, löst
dies nicht nur Änderungen im Schreibeverhalten der betroffenen Ac-
counts aus, sondern wirkt sich auch oft auf das Verhalten der sozialen
Kontakte der Betroffenen aus. Diese Arbeit untersucht die Möglichkeit,
gehackte Twitter-Benutzer zu erkennen, indem das Verhalten des Umfel-
des analysiert wird. Durch das Auslesen und Analysieren der Antworten
auf etwaige Hinweise stellen wir fest, wie viele der betroffenen Benutzer
auf Hinweise aus ihrem Umfeld reagieren. Eine zusätzliche qualitative
Analyse erläutert eine Vielzahl an verschiedenen Hinweisen und deren
Reaktionen.
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Chapter 1

Introduction

With social media usage rising constantly, more and more user accounts
are being hacked. The main goal of hacking social media is to spread
malicious content, mostly by sending links to spam sites. Taking control
over existing, valid users has many advantages for a hacker in compar-
ison to creating dedicated spam accounts, since they already have a
trustworthy connection to their peers [KKL+08].
Twitter, a microblogging service, is no exception to this trend, as many
of its users have to face account theft or abuse. Although Twitter it-
self has some very effective measures against spamming, especially for
detecting dedicated spam accounts, still many malicious messages are
being sent. Especially when users are not very active, they might need
some time until they detect the misuse of their user accounts. Though
many previous approaches already detect hacked accounts very success-
fully by analyzing the content of the alleged spam, little research is done
on the peers of the hacked accounts.
We analyze the communication between allegedly hacked user accounts
and their relationships on Twitter and find that many users that de-
tect suspicious activities from their contacts actually ask whether their
account was hacked or suggest it to have been so. By fetching the re-
sponse of these alleged victims, we analyze how many of those mentioned
accounts react in any way to these hints.
Our approach starts with a set of messages gathered by the DBIS re-
search group of the University of Innsbruck. In a first step, messages
are selected that suspect other Twitter accounts of being hacked. This
is achieved by using a TF-IDF vectorizer for feature extraction and a
support vector machine as a classifier. Additionally, some linguistic fea-
tures such as stemming, lemmatization and stop word removal are tested
for suitability. We then try to reconstruct the reaction of the possibly
affected user and analyze it both quantitatively and qualitatively. To do
so, we fetch possible responses of the affected accounts using the Twitter
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CHAPTER 1. INTRODUCTION

APIs. The responses are then classified using the same methods as in
the first step.
It shows that 30% of the users that have been asked whether their ac-
count was hacked responded positively, either confirming the suspicion
or explaining the situation. We also perform a qualitative analysis on a
selected set of messages, reconstruct the communication path, explain
different scenarios and consequently give an overview of some different
possible cases that are covered by our approach.
The remainder of this thesis is structured as follows: Chapter 2 explains
the environment of Twitter and which parts of it are of importance for
this thesis. It also contains background information on machine learning
techniques and linguistic aspects that are used. Related work is listed
in Chapter 3. Afterwards, a detailed scheme of the methods used is
shown in Chapter 4 and its implementation is explained in Chapter 5.
A qualitative analysis is given in Chapter 6, where an overview of the
different types of conversations is explained. The results are displayed
in Chapter 7 along with a discussion and references to possible future
work.
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Chapter 2

Background

Analyzing the behaviour of social media users often depends on features
of the specific media used. Since the topic of this thesis is Twitter, the
basic functionalities and characteristics of this social media service are
explained in this chapter.
The second part of this chapter focuses on the machine learning methods
that are used and explains the concepts behind them.

2.1 Twitter
Twitter is a popular microblogging platform that was launched in July
2006. With an active user base of 316 million users1, it is the largest
microblogging service. Its fundamental service is sending short mes-
sages, called tweets, that have a maximum length of 140 characters. In
the remainder of this thesis, the terms message and tweet are used syn-
onymously. As of March 2015, over 500 million messages are sent via
Twitter each day [abo].
Generally, each message sent via Twitter is public and could be read by
anyone. Exceptions to this rule are private profiles, who only share their
tweets to their followers.
To add more context to the 140 characters, users have various possibil-
ities. Some of those are triggered by entering specific strings into the
message itself. Twitter parses these strings and internally reacts to their
meanings.

2.1.1 Mentions
Mentions are entered by writing an @-symbol followed by the screen
name of a user on Twitter. This way, the message will appear on the
front page of the mentioned user, regardless of whether the two users are

1https://about.twitter.com/company

3

https://about.twitter.com/company


CHAPTER 2. BACKGROUND

connected with a follower-followee relationship (which will be explained
shortly).

2.1.2 Hashtags
Hashtags are used to categorize tweets and are used by users to con-
tribute content to a specific topic. They can consist of any word that
has the #-symbol prepended, without a space separating them. This
way, users can search for any hashtag and find information related to it.
It is possible to include more than one hashtag in a tweet.

Wayne Rooney has scored 30 goals in the #Champi-
onsLeague, more than any other English player.

Example of a tweet regarding the Champions League

2.1.3 Retweets
If a user wants to spread the information of an existing message, one can
forward the tweet. As [BGL10] denotes, there are multiple methods of
classifying a message as a retweet, the most common one is prepending
the message with the sequence RT followed by a mention to the original
poster. Often, the message retweeted must be changed by the retweeting
user due to the 140 character limit.

RT @montitan: Great game by @FNATIC! #LCS

Example of a retweet containing a mention and a hashtag

2.1.4 URLs
To be able to post links in tweets, Twitter automatically uses its own
URL shortening service to reduce the length of each URL posted. Ini-
tially, an external shortening service was used (first TinyURL, then
bit.ly [twib]) before their own implementation was introduced in 2011
[tco]. It is not possible to prevent the URL from being shortened by
Twitter. The original destination is however stored and contained in the
tweets that are available via the API. It reduces the length of any URL
to exactly 23 characters, even when the original URL is shorter [twic].

https://t.co/smw1g1gqGq

Example of URL that has been reduced by Twitter

Besides adding context to the tweet itself, Twitter also offers methods
to direct the information flow more directly. These are not part of the
tweet itself.

4 Benjamin Murauer
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2.1.5 Direct Messages
Tweets are not suited for sending sensible information, as they are gen-
erally public. Users can send private messages to other users, which are
called direct messages on Twitter and can not be fetched by the public
APIs. As of August 2015, Twitter removed the previously existing limi-
tation of 140 characters for direct messages [twid]. They are often used
for spam, as people generally trust direct messages more than public
tweets, according to [KKL+08].

2.1.6 Following Users
A user can follow another user to be kept updated with this user’s tweets.
This relation is unidirectional, but can be set up for both users sepa-
rately. Neither Twitter nor the English language feature an antonym
for the word follower, but in other papers the word followee has estab-
lished itself and will also be used in the remainder of this thesis. When
a user opens the front page on Twitter, a list of messages of the user’s
followees is displayed. Users can decide to generally mark their tweets
as private, which causes them to only be visible for the followers of the
author. Otherwise, all messages are public and can be found using the
search or any kind of API.
User accounts with many followers are therefore more attractive for
hackers, as they offer a larger audience for alleged spam. This way,
hackers have a higher chance of distributing malicious content, as ac-
quiring many followers using dedicated spam accounts is more diffi-
cult [TGSP11]. This makes celebrities and companies with many fol-
lowers attractive targets for hackers.

2.1.7 Authentication
To prevent abusive behavior, Twitter requires all applications using the
APIs to be authenticated. Two different authentication methods are
offered, which both rely on the OAuth authentication framework2. Ta-
ble 2.1 shows different application functionalities and their required au-
thentication level.

User based authentication

User based authentication provides the application access to all user-
related functions, including posting tweets and searching for users. It
is generally meant for applications that are used by a single user, like
alternative clients. Connecting to the Stream API requires user based
authentication. Note that the access to direct messages that is noted in

2http://oauth.net
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application authentication user authentication

• fetch user timelines

• access friends and followers
from any user account

• retrieve information of a spe-
cific user

• search in tweets

• post tweets

• connect to streaming end-
points

• search for users

• access DMs

Table 2.1: Authentication Methods and Some of Their Available Func-
tions

the table does only provide insight in the messages of the authenticated
user, not others.

Application based authentication

If an application does not need any of the functions that require user au-
thentication, it can authenticate on behalf of the application itself. The
limited access to functions is made up with higher rate limits for the
REST API. Despite the naming, also the application based authentica-
tion method requires the application author to have a Twitter Account.

2.1.8 APIs
Twitter allows third parties to collect the public messages using two dif-
ferent APIs. Each API requires the application using it to authenticate
itself.

Streaming API

Twitter’s Streaming APIs allow programs to collect messages in a contin-
uous way. A HTTP connection is kept alive for a stream and messages
are transmitted with low latency. All streaming APIs feature various
filter mechanisms like searching for specific words within the message
content or filtering messages by specific users. Twitter offers various
pre-defined stream endpoints for specific use cases:

• The Public Stream returns messages from the entirety of Twitter’s
communication. For common applications, the fraction of mes-
sages returned is limited to 1% [Hue]. If an application requires

6 Benjamin Murauer
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more data, one has to purchase a higher access level from Twitter.
Third parties like GNIP3 and DataSift4 used to sell customized
data rates until Twitter bought GNIP in 2014 [Mes] and termi-
nated all relationships to other enterprise resellers [Bry].

• The User Stream returns messages by a single user and roughly
represents the activity on Twitter by that user.

• A Site Stream can be seen as a combination of many user streams,
suited for applications that need to examine multiple users at once.
As of February 2016, this feature is not yet fully deployed and still
in a development stage.

REST API

The REST API is able to answer to specific requests, making it more
flexible but also slower than the streaming API access. It can be used to
fetch tweets sent in the past or to check if a certain user still exists. Ap-
plications are restricted in how many requests they can send to Twitter
per 15 minute time slot.

2.2 Machine Learning
To be able to classify a large amount of messages automatically, the
concept of machine learning is used. Generally, two different types of
machine learning tasks can be distinguished.
Unsupervised learning can be used to extract information from a set of
samples without using previously obtained knowledge [Bis06]. Predict-
ing a category for unlabeled information is called clustering.
Supervised learning methods use previously gathered information about
the data to predict this information on untrained data. Category pre-
diction on labeled data is called classification, which is performed in this
thesis. Figure 2.1 depicts various machine learning techniques offered by
the scikit-learn5 python library and their preferred application area.

2.2.1 Feature Selection
A feature can be seen as a measurable property of a sample. Choos-
ing the correct features heavily depends on the problem at hand and
often requires in-depth knowledge about the problem’s domain. When

3https://www.gnip.com/
4https://www.datasift.com
5http://scikit-learn.org
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predicting

predicting
category

predicting
quantity

labeled data unlabeled data regression

clusteringclassification

Figure 2.1: Choosing the Correct Machine Learning Technique, Simpli-
fied From scikit-learn

“hello world” “Bob says hello”
hello 1 1
world 1 0
Bob 0 1
says 0 1

Table 2.2: Simple Features Extracted From Text Messages

comparing samples, a machine learning algorithm usually uses multi-
ple features of each sample that are combined in a feature vector. The
program part that calculates these vectors is called a vectorizer. When
classifying text messages, the content of the text obviously is of great
importance. A simple model for a feature vector would be to count the
occurrence of words contained in the text, as shown in Table 2.2. This
model, which is commonly referred to as “bag of words” [Bis06], ignores
the word order, which is an advantage for the scenario of this thesis, as
the English grammar allows multiple ways of writing a sentence: “was
your account hacked?” and “did somebody hack your account” have
a different word order, but both suggest a similar scenario. A bag of
words feature vector would be able to show this similarity, as the vector
for both sentences contain values for the words “your”, “account” and
“hacked”. Of course, this is a very rough model. It cannot detect nega-
tion and is susceptible for denormalization of the vectors; words that
occur in many sentences do not necessarily add any information. For
example, every message in the dataset used contains the word “hacked”
or “account”, as these were the keywords used by the Twitter crawler.

8 Benjamin Murauer
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TF-IDF

The TF-IDF model [SWY75], which stands for term frequency / inverse
document frequency, takes these facts into account. It emphasises the
importance of words that occur often in a single sample, but lowers it if
it occurs often in the complete document set. There are multiple ways
of computing TF-IDF that mainly differ in the normalization methods
used. The most basic (non-binary) variant can be described as:

tfidf(t, d,D) = tf(t, d) · idf(d,D) = tf(t, d) · log
(

|D|
|{d ∈ D : t ∈ d}|

)
where t denotes the term calculated, d the document (e.g. message)
and D the entire document set. tf(t, d) is the number of times t occurs
in d, |D| describes the size of the entire corpus and |{d ∈ D : t ∈ d}|
describes the number of documents that contain t. Note that division
by zero is not possible, as a term is always contained in at least one
document. The implementation used by scikit-learn uses a slightly
modified version of this formula:

tfidf(t, d,D) = tf(t, d) ·
(
1 + log

(
|D|

|{d ∈ D : t ∈ d}|

))
This way, even when a term occurs in every single document, its TF-
IDF score is still non-zero. A “term” doesn’t have to be a single word
but can be an arbitrary string, possibly consisting of multiple words.
This is one of the configurable parameters called n-grams that affect the
behaviour of the TF-IDF vectorizer. The complete set of parameters
and the values that were used are explained in Chapter 5.

Other Features

Feature selection is a domain-specific problem, images for example have
intuitively different features than text documents. In case of Twitter
text analysis, one could build a vectorizer that adds information about
hashtags, mentions and URLs. Table 2.3 shows an example of Twitter-
specific features along with the bag-of-words features. Different feature
vectors can be combined by concatenating their values and can be em-
phasised by applying different weighting schemes to them. However,
this approach exceeds the scope of this thesis.

2.2.2 Vector Distances
To be able to measure the similarity of two vectors, a suitable measure
has to be used. In literature, a set of commonly used measures are
Lp-norms, which are defined as

Lp(x) = ||x||p = (|x1|p + |x2|p + · · ·+ |xn|p)
x
p

Benjamin Murauer 9
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Text A:
@alice have you been hacked?
#badpw

Text B:
http://t.co/foobar @bob yes i
was hacked

Text A Text B
have 1 1
you 1 0
been 0 1
hacked 1 1
yes 0 1
i 0 1
was 0 1
links 0 1
mentions 1 1
hashtags 1 0

Table 2.3: Twitter-Specific Fea-
ture Extraction

The most commonly used are the Manhattan norm (p = 1) and the
Euclidean norm (p = 2). For simplicity, these two norms are often
referred to as l1 and l2 norms.
As of the features themselves, vector distance norms may be defined
depending on the problem domain. For example, a Twitter-specific dis-
tance could be to calculate the l2 norm for the TF-IDF features and a l1
norm for the Twitter-specific features and then combine them. Choos-
ing the best norm is an optimization task that is not trivial to answer
beforehand and often is searched for automatically, among with other
parameters. However, this thesis does not use self-implemented vec-
tor distances but relies on the built-in l1 and l2 distances offered by
scikit-learn.

2.2.3 Feature Filtering

When dealing with text classification, the feature vectors can get very
large, as every possible word is a potential feature. To decrease the
size of these vectors and therefore the computational costs of handling
these vectors, features are often filtered. This means that only the most
valuable features are kept in the vector while the non-relevant ones are
removed. Determining which features are relevant can be done in many
ways (e.g. document frequency, information gain, χ2-test, term strength
or others). [YP97] Shows that a χ2-test can be very effective in reducing
text features. Reducing the number of features is often desired for per-
formance reasons, but can also decrease the performance of the classifier,
since it essentially reduces the amount of information available. There-
fore, filtering features is difficult to recommend in general but rather

10 Benjamin Murauer
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Figure 2.2: Example of Hyperplanes and a Set of Samples

depends on the problem at hand.
This thesis uses a χ2-test, which is implemented in the scikit-learn
library. For each feature-class combination, it calculates the probability
of a feature being independent of the class. The lower this probability
is, the more important the feature is for the model. After assigning a
probability for each feature, the top-n features are selected for further
processing. Choosing n is an optimization task that can be handled by
e.g. a brute force grid search approach.

2.2.4 Support Vector Machines

Once the feature vectors are extracted from all documents, they can be
used by a classifier for future document prediction. Many different clas-
sifier families exist, all with their own set of strengths and weaknesses,
which have to be considered when choosing a classifier. For example,
some classifiers don’t perform great with high dimensional feature vec-
tors.
A Support Vector Machine or SVM is a model introduced by Boser,
Guyon and Vapnik in 1992 [BGV92], but the underlying research had
already been going since the 1930s [Fis36]. Research [Joa98, DPHS98]
has shown that SVMs are suited for challenges that text classification
brings, mainly the high dimensionality of the feature vectors.
Roughly speaking, a SVM tries to construct a hyperplane that separates
samples, while trying to maximize the overall border distance to them.
An example for such planes can be seen in Figure 2.2, which shows an
example of a SVM in a two dimensional space.
While h3 does not separate the blue (circled) and red (crossed) samples
at all, h2 does it with a bigger margin than h1. The samples that define
the margin are called support vectors.

Benjamin Murauer 11
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small C
large C

Figure 2.3: Different Values for C

The technical definitions of support vector machines are out of the scope
of this thesis and can be read in [Vap95]. One feature that is relevant
for this paper is the strictness parameter C. The higher the value of
C, the more penalty the model puts on misclassifying a training sample.
Figure 2.3 shows a continuously drawn hyperplane using a small C value,
which misclassified one blue sample while training, but features a large
margin. The dotted hyperplane that uses a large C does not misclassify
the sample, but has a thinner margin. In general, it is not possible to
say which scenario is better, since this depends on the data that is to
be predicted. Figure 2.4 shows two scenarios for different samples that
have been predicted. It is clear that on the left side, the hyperplane
with the smaller C performs better, while on the right side the larger C
is the better choice. At training time, this cannot be foreseen.

Kernel Functions

Often, data is not linearly separable in the original input feature space,
one example can be seen in Figure 2.5. One method that can be used
by SVMs is to calculate implicit features of two vectors in a higher-
dimensional feature space, where separation is easier. However, linear
SVM implementations are much faster (e.g. liblinear) and text clas-
sification often does not necessarily benefit from higher dimension ker-
nels [HCL03]. For these reasons, this thesis uses a linear kernel.

2.2.5 Unbalanced Classification

The optimal case for training a SVM requires the data to be distributed
evenly among the available classes. Naturally, this is not the case for

12 Benjamin Murauer
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Figure 2.4: Different Scenarios for Prediction Data

many real life situations. When a class is underrepresented, as is dis-
played on the left side of Figure 2.5, the hyperplane will generally be
too close to the smaller class. There are various ways that cope with
this imbalance [Hos05], which can be separated into two general groups:

• Change the training samples to be evenly distributed. This can be
achieved by different techniques:

– Gather more data for the underrepresented class. Mostly,
this is the preferred method, as it also adds information to
the classifier.

– Delete samples from the overrepresented class (undersam-
pling). This method can only be used if the remaining sam-
ples still represent the class well enough [KM97].

– Generate dummy samples for the underrepresented class (over-
sampling). This can be done by plainly copying samples or
by generating artificial samples by introducing noise.

In most cases, gathering more data is the preferred option as it
increases the total amount of information available to the model.
Research whether over- or undersampling yields better results in
general are inconclusive [Hos05]. It generally depends on the prob-
lem which approach performs better.

• Modify the classification process by tuning the SVM. In this case,
the SVM can use different values for C for the two classes, putting
a higher penalty on misclassifying the underrepresented one. This
option is built-in in the scikit-lern library, which normalizes
the C value according to the number of samples in each class. A
schematic outcome of this method is displayed by the dashed line
of Figure 2.5.

Benjamin Murauer 13
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unweighted
weighted

Figure 2.5: Unbalanced Classification with and without Class Weights

2.2.6 Cross Validation

A commonly used technique to verify parameters in machine learning is
cross validation [AC+10,sci]. Multiple methods exist, sharing a common
basic strategy: a subset of samples is excluded from the set and is used
for validation. The remaining samples are used for fitting the model (in
case of a SVM: finding the hyperplane). Afterwards, the model predicts
the classes of the previously separated verification samples. Then, these
classes are compared to the true classes, which are known in advance,
since they are manually classified. This step is then repeated using a
different verification and training set.
Depending on whether all possible combinations of verification and train-
ing samples are actually tested, cross validation techniques can be dis-
tinguished into exhaustive and non-exhaustive methods. The most im-
portant methods include [AC+10]:

Exhaustive Cross Validation Methods

• Leave-p-Out: P samples are used for verification, the rest is used
for training. This method is not suitable for a high number of
samples, as the amount of possible combinations which have to be
tested grows very quickly with Cn

p , where n is the number of total
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Original data
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Oversampled
data

Training set
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Testing set

Fold 2

Figure 2.6: Example for Wrong Cross Validation With Oversampled
Data

training samples.

• Leave-One-Out (LOO): This is a special case of leave-p-out with
p = 1. Since Cn

1 = n, this method is better suited for larger sample
sets.

Non-Exhaustive Cross Validation Methods

• k-Fold: The total training set is split into k subsets. Each of the
subsets is used for verification once, while the remaining ones are
used for training.

• Stratified k-Fold: A special variant of k-Fold where the ratio of
classes is tried be kept constant within the subsets.

• Repeated Random Sub-Sampling (Monte Carlo Cross Validation):
This method selects training and verification sets randomly. Due
to the randomness, some combinations may occur multiple times
while others may never be tested. Depending on how many itera-
tions of this method are used, its results approximate the leave-p-
out method.

When using cross validation together with sampling, it is important
that the folds that are used for testing do not contain sampled data.
Otherwise, the respective score is calculated using data that does not
represent the actual data at hand and will not give an accurate image of
the classifier’s performance for later prediction. An example for wrong
and correct cross validation (with k=2) using oversampled data is shown
in Figures 2.6 and 2.7. In a real life scenario, k is usually higher (i.e. 5
or 10).
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Figure 2.7: Example for Correct Cross Validation With Oversampled
Data

True class
True False

Predicted class True True Positive False Positive
False False Negative True Negative

Table 2.4: Confusion Matrix

2.2.7 Quality Measures
There are several different methods to measure the quality of predicted
results. For the following explanations, TP stands for true positives,
thus representing elements that were labelled correctly by the classifier.
TN stands for true negatives, FP for false positives and FN for false
negatives. The respected classes are explained by the confusion matrix
in Table 2.4.

• Accuracy is defined as TP+TN
TP+TN+FP+FN and gives an overview of

how well a classifier is performing by analyzing the total of correct
vs uncorrect predictions. It is an unsuitable score for unbalanced
sets; Imagine a training set consisting of 1 positive and 10 negative
samples. A prediction model that blindly classifies every sample
as negative still reaches an accuracy score of 9

10 , but is obviously
not suited for a real life application.

• The precision value is defined as TP
TP+FP , thus representing the

fraction of the selected results being true. A perfect score of 1
means that no false positives have been selected. A synonym for
precision is positive predictive value.

• The recall value is defined as TP
TP+FN , a high recall value therefore

means that nearly all of the relevant samples have been matched
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correctly by the classifier. It is also known as true positive rate,
hit rate or sensitivity. A score of 1 means that all positive samples
have been predicted as such.

• The F1-score is defined as 2TP
2TP+FP+FN = 2 · precision·recall

precision+recall . It is
the harmonic mean of precision and recall. As the F1-score does
not take true negatives into account, this score is primarily used
for detection tasks, which focus of the true detection of one class.
It is a special case of the Fβ score (with β = 1), which additional
has a parameter β that determines which of the two sub-scores
precision or recall has a higher weight.

Obviously, a trade-off between these scores has to be achieved, especially
between precision and recall. Optimizing for precision usually means
increasing the “strictness” of the classifier, which on the other hand,
leads to an increase of false negatives, therefore lowering the recall value
and vice versa. All of these measures have in common that their perfect
score is 1, while a score of 0 is worst.
The relationship between precision and recall makes their relationship to
each other a separate measure, called a precision-recall or PR-curve. In
these curves, the relationship between precision and recall is displayed
for different probability thresholds. Typically, a step-like pattern can be
seen in PR-curves, which originates from the nature that precision and
recall are defined.

• Precision: when lowering the classifier’s threshold (for samples to
be classified as positive), the total amount TP + FP (the denomi-
nator in precision) increases along with the TP (the enumerator).
This means that lowering the threshold may increase or decrease
precision: If the old threshold was too high, the new threshold
causes more TPs to be detected than FPs, increasing precision.
However, if the threshold was correct or too low already, the in-
creasing FPs will cause precision to fall.

• Recall: When lowering the classifier’s threshold, the amount of
TPs rises, but the number of FNs decreases at the same rate. This
means that recall may rise or stay constant when decreasing the
threshold.

Together, these properties result in a step-like pattern: A small change
in the threshold may cause the precision (on the y-axis) to drop rapidly,
as many false positives are classified with this new threshold. Further
changing the threshold results in TPs being classified as such, increasing
precision. On the x-axis, the recall value does not fluctuate in such a
way. Figure 2.8 shows an example of a PR-curve with this step-like
appearance.
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Figure 2.8: Example of a Precision vs Recall Curve

2.3 Linguistic Aspects
Handling text messages offers unique possibilities to improve classifi-
cation. The tweets at hand all are written in the English language,
as this was filtered at crawling time. This allows for specific improve-
ments regarding the preparation of the samples. This section describes
three linguistic improvements that have been tested while analysing the
tweets.

2.3.1 Stop Words
Stop words are words that occur very often and don’t add any semantic
information to the text itself, typical examples are “a”, “the” or “and”.
They can be removed to allow for smaller feature vectors and an im-
proved performance of the analysis.

2.3.2 Stemming
Stemming aims to shorten words to a common word stem. This can
be done by using a lookup table, by following simple rules that cut off
or replace specific letters or by a combination of these techniques. The
resulting stem does not necessarily have to be a valid word on its own.
The words “argue” and “argued” could be stemmed to the common stem
“argu”.

18 Benjamin Murauer



CHAPTER 2. BACKGROUND

Word Stem
quickly quickli
suspicious suspici
hacked hack

Table 2.5: Examples of Words Stemmed by the Porter Algorithm

Word Stemmed Lemmatized
better better good
ran ran run
been been be
was wa be

Table 2.6: Examples of Stemmed and Lemmatized Words

There are many different types of stemming implementations that differ
in their set of rules. A commonly used implementation in computer
linguistics is the Porter Stemmer [Por80]. Its author, Martin Porter,
developed a complete stemming framework called snowball6 including a
custom stemmer definition language to easily write new stemmers for
different languages. It uses a set of rules to shorten a word and classifies
the length of words by introducing a custom interpretation of a syllable.
Some examples for words stemmed by the Porter algorithm are listed in
Table 2.5.

2.3.3 Lemmatization
Lemmatization is similar to stemming, but can handle more complex
word relationships such as irregularity in verbs. The lemma of a word can
be interpreted as its meaning [Leh] or how the word would be represented
in a dictionary. While stemming can be seen as a cooking recipe to
remove letters by following specific rules, lemmatization requires a larger
knowledge of the analyzed language. Therefore, it is nearly impossible
to construct a set of rules to apply to a word to lemmatize it. Using
a dictionary provides more flexibility, which is required depending on
the complexity of the language used. Table 2.6 shows a list of example
words that have different stemmed and lemmatized forms. In contrast
to stemming, lemmatizing always produces valid words as an output.
Lemmatization can be ambiguous, the word “meeting” can be inter-
preted as a verb or noun and lemmatizing it would lead to different
words (“meeting” for noun, “meet” for verb). When trying to optimize

6http://snowball.tartarus.org
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the results, such context has to be provided in addition to the word
itself. However, supplying context often is not possible in an automated
process. In this case, a word is often lemmatized in all possible varia-
tions (e.g. as verb and as noun) and the shortest outcome is used as the
result.
Since stemming and lemmatizing both aim to find a common root of a
word, it is intuitively not useful to apply both techniques to the same
text, as the outcome depends on the order in which the operations have
been performed. Stemming before lemmatizing could transform the
word “quickly” to “quickli” to “quickli” (as “quickli” is not a valid word
and cannot be lemmatized), but lemmatizing before stemming would
lead from “quickly” to “quick” to “quick”.
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Related Work

The success of Twitter and its rising spam problems caused research
to investigate many areas. Previous work includes many different sys-
tems for spam detection and classification. Spam messages can reach
a Twitter user in different ways. [TGSP11] detect four major exposure
locations:

User timeline. Spammers can post tweets on a users timeline by first
luring them into a follower-followee-relationship or by using men-
tions, which does not require any previous interactions.

Trending topics. When using trending hashtags or keywords, the spam
message is more likely to be in the result list of a query searching
for those.

Search. Beyond trending topics, Twitter features a more specific search
for message content. Spammers can include popular search terms
for reaching a larger audience.

Direct messages. A user can receive spam by direct messages if the
spamming account follows the user. The relationship does not
need to be bidirectional for this communication channel to work.

3.1 Existing Spam Detection Methods

Because spammers are successful on Twitter, research on detecting com-
promised accounts has been going on for some time and many differ-
ent approaches have evolved. The majority of the existing methods
(e.g. [MC11,BMRA10,SKV10]) uses both message and user related in-
formation for classification:
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Message Related Features

URLs. The main target of a spam message on Twitter is to redirect the
user to illicit content, therefore many spam messages contain URLs. As
described in Section 2.1.4, Twitter uses its own URL shortening service,
making the final destination of a link invisible to the user. Spammers
often use additional URL shorteners to obfuscate the true destination.
A study performed by [TGSP11] shows that from over 1 billion distinct
URLs collected, roughly 15 million distinct destinations were left after
resolving one redirect (t.co was not yet launched). By using their own
URL shortening service, Twitter can check the posted URL and detect
blacklisted sites and malicious content before it is posted and react faster
to spammers.
Retweets. As [GTPZ10] denotes, there are no limitations for retweeting
messages on Twitter, making messages by popular accounts an easy
target for hijacking:

http://spam.com RT @barackobama A great battle is ahead
of us

Example hijacked Tweet, from [GTPZ10]

Hashtags. Some spammers use dedicated hashtags to lure users to
alleged services:

Get more #fans, #followers, #customers
http://bit.ly/1vWkQ5J

Example of dedicated spam hashtag

Others use trending topics in the spam message without relating to its
meaning or content:

Help donate to #haiti relief: http://spam.com

Example of hijacking a trending topic, from [GTPZ10]

Temporal features. Most users have a temporally regular basis of
posting, as [ESKV13] points out, including busy times (e.g. lunch break)
or more quiet times (e.g. sleeping hours). A highly irregular posting
pattern may indicate a malicious account.
Message content. The text itself can also be tested for containing
suspicious terms, as spam mostly occurs around specific topics or in
dedicated campaigns. The most popular topics according to [ESKV13]
include free electronic media, jewelery, electronics, vehicles, finance or
dieting.
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Message language. Another indicator for spam is when a user is
posting updates in a language that is different from the language spoken
in the social relationships of that user.

Account Related Features

User relationships. Forming relationships on Twitter is difficult for
Spammers. In the dataset observed by [TGSP11], 89% of the spam
accounts have less than 10 followers, while 40% have none. Instead,
these accounts use hashtags and mentions to distribute their content to
as many users as possible.
Message rates. Sending messages with a high frequency is a typical
indication for a spam account. In the research performed by [TGSP11],
34% of the observed spam accounts pursued the strategy of sending as
many messages as possible before being suspended by Twitter. Other
spamming accounts behave more carefully, sending messages only every
few hours or days.

3.2 Twitter’s Spam Detector
Twitter’s methods for detecting and disabling compromised accounts are
already quite effective. As [TGSP11] denotes, more than 77% of hacked
accounts are being detected and suspended by Twitter within one day
and 92% in three days. The details of the implementation of Twitter’s
detector are not public, but their rules [twig] give a good overview on
what they are watching out for, including:

• a high frequency of following/unfollowing other users

• the messages consisting mainly of links

• a large number of other users blocking the observed account

• …

3.3 Third Party Analysis
All the previously discussed methods have in common that they rely on
data provided by the hacked account or message content itself. When
working with this data, it has to be acquired as early as possible. When
a user reclaims control over the hacked account, any unwanted messages
sent during the compromised phase are often deleted, as is suggested by
the Twitter guidelines [twia]. Once a message is deleted, it is impossible
to retrieve using the public API. Therefore, one must collect tweets sent
by the spammer to be able to use them for any data analysis.
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People that follow the hacked account often might be able to notice
before the original owner of the account does and post about the event,
propagating the information. For the owner of the hacked account, this
time difference may be of great importance.
This thesis investigates the possibilities of analyzing peer reactions to
detect a possible account hack. This is done by watching accounts for
suspicious user mentions that suggest an account being hacked. After-
wards, the messages that the mentioned users wrote after the mention
are analyzed.
At the time of writing, this approach is unique in the research field.
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Methodology

Following previous work [ZS14], we use machine learning techniques to
analyze public Twitter messages. The approach analyzed in this thesis
consists of five basic steps that are visualized in Figure 4.1:

1. Preprocess and clean the crawled data (Sec. 4.1).

2. Find messages that contain suggestions of a Twitter account being
hacked. This is achieved by using a Support Vector Machine that
classifies tweets that were crawled by the DBIS institute (Sec. 4.2).

3. Filter those messages and ignore those which contain mentions of
users that are no longer available on Twitter. This step involves
using the Twitter API to search for user ids (Sec. 4.3).

4. Try to get possible responses from the mentioned users by using
the Twitter REST API (Sec. 4.4).

5. Use a Support Vector Machine to identify possible responses as
such (Sec. 4.5).

Crawled 
tweets

“positive”
set

Twitter-API

timelines

SVM SVM

Classified
responses

“mention”
set

pre-
processing

“existing”
set

1 5

3

2

4

Figure 4.1: Basic Workflow
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In this Chapter, the basic steps described above are explained. The im-
plementation details and the usage of the scripts is covered in Chapter 5.
Basic results of each main step are discussed in this chapter, as they
explain the choices that were made for the following steps. The overall
results are explained in Chapter 7.

4.1 Dataset
The basis of the analysis is a dataset collected by the DBIS research
group of the University of Innsbruck [ZS14]. It consists of 4.7 million
tweets that have been collected from November 2012 to October 2014
using the Twitter Filter API [twie]. All of these tweets contain either the
words “hacked” or the word “account” in them. Statistical details of the
dataset are shown in Table 4.1. Table 4.2 displays the most mentioned
user names and the number of their occurrences. Celebrities like these
can have a big impact on the dataset, as their messages are usually
retweeted a lot. This thesis does not include any measures to detect or
remove these duplicates.

4.1.1 Preprocessing

The first step was sorting out tweets that do not contain useful informa-
tion for analyzing. This mainly includes two groups of messages: (1.)
tweets that don’t contain any mentions. As this thesis aims to collect
third person data based on mentions, it is obligatory for each message
to contain a mention, in particular as a json object field. All messages
that do not contain such a field are removed from the set using a python
script. (2.) tweets that don’t contain the word “hacked”. Many of the
crawled tweets are retweets, see Table 4.1. Some Twitter clients offer
a function to directly retweet a message and automatically crop the
original message if the length of the new one exceeds the 140 character
limit. By doing so, tweets may lose important information if the original
message contained information about a possible hack:

RT @wayfaringcalum: @Calum5SOS hi cal,I hope youre
having fun in America!! If you happen to see this pretty
please refollow me,someone hack…

Example of a cropped tweet

These messages are fetched by the crawler because they store the retweeted
message (which contains the word “hacked”) in a separate json field.
This message itself can not be used for further prediction, as the core
content of the message is incomplete. However, the original tweet can
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Attribute Value
Tweets 4,698,845
Tweets incl. extracted retweets 5,984,406
Distinct authors 2,670,318
Retweets 1,495,325
Messages containing mentions 3,281,005
Messages containing hashtags 555,981
Distinct hashtags 120,690
Messages containing URLs 614,059
Distinct URLs 216,318

Table 4.1: Dataset Characteristics

be used.
There are other cases in which the information about the hack was added
by the retweeting itself, often citing the alleged spam:

Who hacked ya account? “@blackboy_ken hurt so good -
Carly Rae Jepsen”

Example of a retweet where the “hacked” information was
added by the retweeter

In this case, only the retweet is valuable whereas the original message
does not contain useful information for our purpose. To include all
relevant messages, all available retweeted messages were extracted from
the json information and added to the dataset. Afterwards, any message
not containing the word “hacked” was removed from the dataset.
After performing these 2 filtering steps, the resulting set contains 2.2
million messages (see Table 4.3) and will be referred to as the mention-
set.

4.2 Extracting the Positive-Set
Many messages were not of interest to the research question, as they
either contained information about another type of account (e.g. email
or banking account) or they were about the posting user and not about
an other user (e.g. “my account got hacked”). The tweets that are
of interest should suggest an other Twitter account being hacked (e.g.
“@foobar has your account been hacked?”). A more detailed analysis of
the data at hand can be found in Chapter 6. To be able to predict the
relevance classes of the remaining tweets, machine learning techniques
were applied.
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User Description No. of Mentions
@NiallOfficial singer 39,136
@donghae861015 singer 35,485
@Harry_Styles singer 33,218
@justinbieber singer 32,366
@Luke5SOS singer 30,012
@twitter official Twitter 21,285
@AllRiseSilver singer 21,222
@Real_Liam_Payne singer 17,445
@Michael5SOS singer 16,153
@ArianaGrande singer 16,130

Table 4.2: Most Occurring Mentions

Set Messages
All 4,698,845
Mention 2,266,935
Positive 444,315
Existing 412,228

Table 4.3: Sizes of the Filtered Message Sets

The basic subworkflow for this step is displayed in Figure 4.2 and consists
of following steps:

1. Manually classify a random subset of the document corpus.

2. Generate feature vectors by using a TF-IDF vectorizer.

3. Select the best features by filtering with a χ2 test.

4. Train the SVM with the training vectors.

5. Predict the classes of the remaining documents.

The size of the resulting positive-set heavily depends on the parameters
used for the vectorizer and classifier. To select these parameters, a brute-
force grid search method was used, which is described in Chapter 5.
When searching for optimal parameters, the grid search engine optimizes
one measure, which must be specified. To select a suiting measure, the
workflow as well as the problem at hand have to be analyzed:

• When analyzing the workflow, it becomes clear that the bottleneck
of the steps at hand lies in the Twitter limitations in steps 3 and 4.
Therefore, it would be computationally and temporally expensive
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Figure 4.2: Class Prediction Workflow

to use valuable Twitter resources with false positive data, making
the precision score the obvious choice for optimization. However,
one can not only optimize for precision. Imagine a model that
classifies one correct positive sample and predicts all others to be
negative. This would yield a perfect precision score of 1.0, while
being not usable at all.

• Accuracy is a suitable measure if the class sizes are equal, but
even a small difference in training class size makes this approach
less reliable. This phenomenon is called the accuracy paradox: a
classifier that blindly classifies each sample to be of the majority
class will achieve a score higher than 0.5 (which represents the
score of a random classifier) without being of any use.

• The f1-score does not take true negative samples into account.
However, when the classification aims to detect one specific class
and disregards all other samples as “rest”, this does not have any
negative effect on the prediction. Therefore, the f1-score is the
score that the grid search should optimize (for the positive-class,
specifically).

Of the 3,650 messages that were classified manually, 455 were found
positive. As described in Section 2.2.5, different methods exist for deal-
ing with unbalanced data. Table 4.4 shows the f1-score of four methods
that were tested for coping with the imbalance of the training samples.
Figure 4.3 displays the recall vs precision curve of these methods.
It is clear that all four methods perform similarly, which can be explained
with the rather small difference in class size. For its simplicity and the
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method description f1-score
plain does not consider the class imbalance at all 0.73
oversample blindly copies random positive samples for

the training set of the cross validation
0.70

undersample randomly removes negative samples 0.72
autoweight uses the built-in weighting mechanism of

scikit
0.67

Table 4.4: Balanced vs. Unbalanced Training Class Sizes

slightly better f1-score, the plain version was used to calculate the final
positive-set.

4.3 Filtering for Existing Users
Before the Twitter API is used to fetch the responses to these filtered
messages, all tweets by users that are no longer active can be ignored.
Twitter offers an own API call for looking up user names, which is more
feasible than detecting these accounts by an empty response set. A
batch of 100 user names can be looked up at once, with 180 requests per
15-minute time slot, resulting in looking up 10,800 users per hour. This
way, the positive-set could be filtered in about 2 hours. The resulting
message set, which can be seen in Table 4.3, shows that 9.2% of the
users that were mentioned in the positive-set were no longer active or
available.

4.4 Fetching User Timelines
Having determined the set of users still available, an obvious, interesting
information is to know whether the corresponding user did reply to the
mentioned tweet. For this purpose, the tweets posted right after the
mention are of most interest.
Messages on Twitter have a dedicated field for if they are a direct re-
ply to a previous message. An obvious method would be to use the
search API to scan for direct replies to these mentions, but this would
exclude general replies: often, users respond to all of their followers after
reclaiming control over their account, rather than replying to a single
reporter [ZS14]. As this is not a direct reply, the according field in the
message would not be set and cannot be searched. Also, people often
reply to a message without using the intended functionalities (e.g. when
using a custom Twitter client), which results in the replies not showing
up in the results from the appropriate API call. Therefore, all messages
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Figure 4.3: Precision-Recall Curves of Various Balancing Methods

of the according users were crawled from the present to the time of the
mention, which allows for a more flexible analysis of the data.

4.4.1 Timelines and Message IDs

Each message sent on Twitter gets a unique ID. In September 2011,
Twitter presented a new solution to assign IDs to tweets and direct
messages, called Snowflake [Kin]. Before this, Twitter used globally
sequential numbers, which turned out to be too difficult to synchronize.
With snowflake, IDs are based on the creation time of the message as well
as the ID of the snowflake worker client and a sequence number [twif].
Technically spoken, the IDs are now no longer fully sequential [Kin]:
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Figure 4.5: Twitter’s API for Fetching Timeline Messages

In mathematical terms, although the tweets will no longer
be sorted, they will be k-sorted. We’re aiming to keep our k
below 1 second, meaning that tweets posted within a second
of one another will be within a second of one another in
the id space too.

4.4.2 users_timeline
The REST-API call to retrieve messages posted by a certain user is called
users_timeline1. It fetches a maximum of 200 messages from a user
specified by either the user_id or the screen_name field. Additionally,
two values may be specified to further narrow down the area of interest:
The max_id field limits the results to messages that have been posted
before a certain ID, whereas the since_id selects tweets that have been
posted after a certain ID. Within this range, Twitter will always return
the most recent messages, as is shown in Figure 4.4.
As it is impossible to guess the correct max_id parameter, the only
reliable approach would be to start from the most recent post (which
is yielded by calling the API function with no parameters) and keep
collecting until either 1.) the fetched messages are overlapping with the
area of interest or 2.) the API doesn’t allow to collect more tweets (only
the 3,200 most recent tweets are available for applications to load). The
scheme of this method is displayed in Figure 4.5.
Using this method restricts the crawling of user tweets, as many men-
tions used in the dataset were several years old at the time of processing.

1https://dev.twitter.com/rest/reference/get/statuses/user_timeline

32 Benjamin Murauer

https://dev.twitter.com/rest/reference/get/statuses/user_timeline


CHAPTER 4. METHODOLOGY

mention

time

present

Interesting tweetspreliminary batch

Figure 4.6: Preliminary Call to Prevent Unnecessary Message Fetching

Many users therefore already posted more than 3,200 messages since the
mention in our dataset. So if the ID of the mentioned tweet is not greater
than the oldest tweet recovered within 16 batches, the area of interest
is not available for the application. Additionally, the sheer amount of
users wouldn’t allow an efficient crawling of the data in a decent amount
of time for this thesis. Fetching messages from 100 random users took
approximately 1 minute per user, taking Twitter’s 180 requests per 15
minutes limitation into account. This would lead to a crawling time of
90 days for all 153,000 users in our dataset.
One measure to postpone this problem and get some data quickly is
to sort the mentions chronologically and start crawling with the most
recent ones, minimizing the chance of the mentioned user having posted
too many messages since the mentioning tweet.
Another measure is to make one preliminary call with the max_id set
to the ID of the mentioning tweet, as is shown in Figure 4.6. If Twitter
answers to this request with a result, it means that the area of interest
is available for the user to crawl. If no result is being returned, it means
that the mention-ID is beyond the 3,200 tweet limit and the preceding
message can not be fetched. This leaves a theoretical possibility of the
preceding message exceeding the 3,200 tweet limit while the succeeding
message would be within the fetchable range, which is ignored in this
approach. The preliminary call does not yield any interesting tweets, as
a possible result will only contain messages that have been sent before
the mention happened. Therefore, the count parameter of this call can
be set to 1 to minimize traffic and transmission time. This way, one can
prevent crawling 16 batches of messages without having a result in the
end.
Naturally, as a user can appear in multiple mention incidents that don’t
have to be at the same time, so prior to fetching the user’s timeline, the
mentions are sorted chronologically and the oldest mention is used for
retrieving the appropriate time stamp.
Despite these counter-efforts it is clear that fetching the users response
is a task that is optimally done at the same time as fetching the men-
tion. An adaption to the crawler would eliminate the need of this step
altogether, while offering a better answer of what actually happened to
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Figure 4.7: Duration Until Reply

the account: If the account is suspended either before or directly after
the mention was posted the crawler could notice it, which suggests an
actual hack.
With the problems described at hand, a set of 54,835 responses was
crawled, where every response consists of multiple messages (theoreti-
cally up to 3,200).

4.5 Classifying Responses
Figure 4.7 shows the response time of the users from the manually clas-
sified messages. It can bee seen that most users that have responded
did so within the first 24 hours after the mention, 48% of the replies
happened within 60 minutes after the user received a hint.
Figure 4.8 shows a similar behavior regarding the number of messages
that were sent before the corresponding user reacted. In 53% of the
cases, the users reply with the first message they sent after they were
mentioned. Of course, the user could have sent (possible spam) mes-
sages which were deleted later on and therefore were not fetched by the
crawler.
Based on this data, the classification of the remaining mentions was
limited to the responses that occurred within the first 10 messages, in
which 95% of the users that were classified manually had responded. A
mention and its following replies are classified as positive if the first 10
replies contain at least one positively classified response.
The classification itself is a bit more difficult in terms of what is seen as
a positive match at all. Generally, one can distinguish following cases:
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Figure 4.8: Message Number After Reply

1. The user did not respond in any way to the mentioning tweet.

2. The user responds to the tweet in a direct way.

3. The user responds in a general way to more than one tweet, not
using a direct mention.

For the manual classification process, only two classes “positive” and
“negative” were taken, for the sake of simplicity and better SVM per-
formance. In this case, the “positive” class included the cases 2 and
3, which means that we consider a post a response even if the original
writer didn’t send a direct mentioning tweet. More details on how the
responses differ in classes can be seen in Chapter 6. The classification
of the replies itself was performed in the same way than the first clas-
sification step and can bee seen in Figure 4.2. A set of 41,569 replies
was classified manually, where 617 messages were classified as a positive
response.
Figure 4.9 shows the precision vs recall curve of the second classification
step using the same methods that were used in step 2. The according
f1-scores can be seen in Table 4.5. The oversampling technique performs
worse than in the previous classification, while the undersampling and
autoweighting methods perform better. Taking the f1-score into account,
the undersampling method was chosen for predicting the final response
set.
This final classification step results in 16.452 responses classified as pos-
itive, which is 30% of the crawled set.
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method f1-score
plain 0.78
oversample 0.73
undersample 0.78
autoweight 0.70

Table 4.5: Precision vs. Recall Curve of Balancing Techniques on the
Second Classification Step

Figure 4.9: Precision vs. Recall of Second Classification
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Chapter 5

Implementation

This chapter features detailed technical information about the imple-
mentation of the steps that are described in Chapter 4. It is sectioned
according to the workflow described in Chapter 4.
The required parameters for all python scripts are described in Chap-
ter 8.1.

5.1 Data Preparation

5.1.1 Sanitizing Json Files

The json-files provided by the Twitter API at the time of crawling did
not have a valid json format when given. There were no separators
between the single json objects, meaning the files mainly consisted of
one single line which had up to 47,000 messages in them. To separate
the tweets, the GNU tool sed1 was used:

ls *.json | xargs sed -i 's/}{/}\n{/g'

This enabled further python scripts to read the tweets one by one by
reading the files one line at a time. Another possibility would have been
storing the tweets in a valid json array, but this was deliberately omitted
because in many cases, the array would have been very large and parsing
it would require a lot of main memory. This way, the lines can be read
one by one, which reduces the memory consumption of the program,
while not requiring notably more runtime. Some of the lines in the
crawled files were empty, which were removed by following command:

ls *.json | xargs sed -i 's/^\w*$/g'
1https://www.gnu.org/software/sed/
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5.1.2 Filtering Mentions

To remove the messages that don’t contain any mentions, a python script
filter_mentions.py was used.
The script checks the “entities” field of the json object in each line. If it
is not empty, the messages is appended to the output file. Otherwise, it
is ignored. In the output file, one message is stored per line.
The resulting json file is 7.3 GB large, which is difficult to handle. For
convenience reasons, the file was split up in 1 GB large chunks using the
GNU tool split:

split -dC 1GB 01_mentions.json

5.2 Extracting the Positive-Set

Before the SVM can classify the messages provided by step 1, a random
subsample of tweets has to be classified manually. To extract a random
subset of tweets, the script 01_select_random_tweets.py is used.
Then, to manually classify these samples, the script 02_classify.py
can be used. It displays the content of each line read to the user, who
has to type either “y” for a positive match, or “n”, otherwise. To end
the program, the user can type “x”. The progress of classifying is saved,
as the script detects how many lines the output file already contains and
skips the first lines of the input file accordingly. To help the user detect
the important parts of a message, certain keywords are highlighted in
color, as can be seen in Figure 5.1. For example, the word follow often
suggests a request to follow after an alleged hack of the own account and
is often done to collect more followers (line 17) and does not suggest
an other account to be hacked. The word your on the other hand is
often important and suggests that the basic message involves an account
belonging to somebody else (line 19). In this example, message number
19 and 21 are a positive match, while the others are negative.
After this step, the messages along with their according class have been
saved to a json file. It is then used for training the SVM, which is done
by the script 03_train.py.
In this script, a TF-IDF vectorizer is used to extract features from the
manually classified data, which then are used to train a linear SVM.
The scikit-learn library offers a pipeline construct for classification,
in which multiple elements can be concatenated.
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Figure 5.1: Manual Classification Process

1 pipe = Pipeline([('tfidf', TfidfVectorizer()),
2 ('ch2', SelectKBest(chi2)),
3 ('clf', LinearSVC())])
4 crossvalidation = 5
5 parameters = {
6 'tfidf__ngram_range': [(1, 2), (1, 3), (2, 3)],
7 'tfidf__stop_words': [None, 'english'],
8 'tfidf__max_df': [0.5, 0.75],
9 'tfidf__min_df': [0.0001, 0.001],

10 'tfidf__analyzer': ['word', stemming_analyzer ,
11 lemming_analyzer],
12 'tfidf__norm': ['l1', 'l2'],
13

14 'ch2__k': [200, 'all'],
15

16 'clf__C': [0.1, 1, 10],
17 }
18

19 gridSearch = GridSearchCV(
20 pipe,
21 parameters ,
22 n_jobs=-1,
23 scoring="f1",
24 cv=crossvalidation
25 )

Listing 5.1: Example of Possible GridSearch Parameters
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In Listing 5.1, such a pipeline is constructed, featuring a TF-IDF vec-
torizer, a select-k-best filter using a χ2 function, and a linear SVM clas-
sifier. It is mainly for user’s convenience, as the data can be trained
to the whole pipeline, which then performs feature extraction, filtering
and training in one step. The parameters of the vectorizer, the χ2 fil-
ter and the SVM are optimized automatically by the scikit featured
GridSearch. It accepts a range of possible values and creates every pos-
sible combination. An example of possible parameters for the vectorizer
and SVM can be seen in Listing 5.1 on lines 5 to 17. For this exam-
ple, the GridSearch module would try 1156 combinations. It is notable
that the parameter set contains possible parameters for the vectorizer,
the χ2 filter and the SVM at one single location, making full use of the
pipeline construct. The actual parameters that were tested and their
optimal result are displayed in Table 5.1. Additional parameters used
by the GridSearch module include a number of threads that the pro-
gram should use (line 22, where -1 stands for “use all processor cores
available”), which measure should be optimized (line 23) and how many
cross validation steps should be performed (line 24).
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As is described in Section 2.2.5, multiple methods were tested to cope
with the imbalance of the training set. The built-in grid search engine
of scikit does not feature a specific sampling parameter, but rather
allows the user to specify custom cross validation patterns. This feature
was used to build a sampling stratified K-fold cross validator, which
can either under- or oversample the training parts of each fold. The
oversampling itself was done by randomly copying samples of the under-
represented class until the class sizes were equal. For undersampling, a
random subset of the overrepresented class with the size of the underrep-
resented class was taken for training. Since the cross validation pattern
is a parameter of the grid search itself (rather than one of the pipeline
elements) and cannot be set to multiple values, the whole grid search
process was performed multiple times, once for each method. The total
amount of grid search training runs equals

munb · kcv ·
∏

i in params

|i|

where munb denotes the number of methods used to cope with the unbal-
anced training set, kcv are the amount of folds being calculated for cross
validation and i denotes a set of possible values for a specific parameter
and |i| its length. For kunb = 4, kcv = 5 and the parameters as explained
in Table 5.1, this totals to a 138,240 training and testing runs.

5.2.1 Including Linguistic Preprocessing
Several linguistic optimizations have been tested for suitability in the
prediction step. For the lemmatizing functionality, the python library
spaCy is used. Within the workflow, it is used by the vectorizer as a pre-
processing step. On line 10 of Listing 5.1 the function lemming_analyzer
is added to the grid search parameters. This way, it can be automat-
ically tested whether the SVM actually profits from the lemmatizing
without having to write own test cases.
Similarly, stemming is also included at this point. As it is not useful
to combine stemming and lemmatizing, the two options are mutually
exclusive token analyzers that are tested within the grid search. For
stemming, the Porter Stemmer algorithm is used by the nltk natural
language toolkit library2.
The domain-specific optimizations of hashtag-, url- and mention-removal
are not included in the grid search parameters as this was technically
not possible in an easy way. Instead, these measures were tested after
having determined the optimal values for the remaining parameters by
trying all possible combinations. By design, this leaves the possibility

2http://www.nltk.org/
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of a specific combination of the parameters together with the removal
of one of those categories undetected. However, the results of these
measurements, which are listed in Chapter 7, show that they hardly
influence the classifier at all. This suggests that the possibility of a
better combination existing at all as well as the difference to the best
found parameter set is small.
Having detected the optimal classifier for the problem at hand, the script
04_predict.py can be used to predict the classes of the remaining mes-
sages in the Mention-set.

5.3 Removing Inactive Users
The next step is to remove the users from the dataset that are no longer
available on Twitter, either because their accounts have been deleted or
deactivated. In theory, this step could have been merged with the next
one, but it is more efficient to check for the users separately. The Twitter
API call for looking up user names allows to search for 200 names at
once, making it far more effective.
For the Twitter API calls, the library python-twitter3 has been used.
The script automatically sleeps for 5 minutes if the Twitter’s rate limit
has been exceeded. A typical sample output is shown in Listing 5.2.

1 [DD] batch 539 of 3511: returned 92 names
2 [DD] batch 540 of 3511: returned 92 names
3 [NN] rate limit exceeded , sleeping for 5 minutes
4 [NN] rate limit exceeded , sleeping for 5 minutes
5 [NN] rate limit exceeded , sleeping for 5 minutes
6 [DD] batch 541 of 3511: returned 88 names
7 [DD] batch 542 of 3511: returned 88 names

Listing 5.2: Sample Output of the User Existance Script

The script also reorders the structure of the output json file. Until this
step, each json file consisted of one tweet per line, encoded in a json
object. Since a single user can be mentioned in multiple messages or be
the subject of a retweet, a logical structure of the data is to group the
messages according to the users mentioned.

{
'uid': 123456789,
'mentions': [ {id: ...}, {id: ...}, ... ],
'timeline': [],

}, ...

On the other hand, this induces a multiplication of messages that con-
tain multiple mentions. Figure 5.2 displays the distribution of mention

3https://github.com/bear/python-twitter
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Figure 5.2: Ratios of Multiple Mentions Among the Message Sets

amounts in the positive-set and shows that the majority of the messages
contain only one mention, making this problem less relevant.

5.4 Fetching Responses
The script 01_fetch_timelines.py takes the data from the previous
step and tries to collect the responses by the allegedly hacked users.
To increase the robustness of the fetching process, an additional store for
saving already handled user names was implemented. For this purpose,
a document based database MongoDB4 was set up which only contains
the user ids of already handled mentions. This way, the script can
be arbitrarily started and stopped without losing the progress. Using
MongoDB for the entire message set turned out to be too slow.
In detail, following steps are executed:

1. The mentions for each user are sorted chronologically.

2. The MongoDB is checked whether the user was already handled
or not. If so, the next entry is handled.

3. Starting with the oldest mention, a preliminary call is made ac-
cording to Section 4.4 to check whether the response for this men-
tion is available.

4. If the result of step 2 is True, all tweets of this user until said
mention are crawled using the API. This way, all possible responses
to newer mentions are covered as well.

4https://www.mongodb.org/
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Figure 5.3: Example of Classifying Responses

After having fetched all data for this user, the timeline is cropped to
contain only 10 messages after each mention, which is mainly done to
save disk space. As described in Section 4.4, this still covers the majority
of relevant response messages.
The script stores the data in the same style as the previous step, while
filling the timeline field of the map. It takes a very long time, as is
described in Section 4.4.

5.5 Classifying Responses
The classification of the responses is done similar to Section 5.2. First, a
random subset of messages was taken and manually classified. For this,
a script 01_classify.py is available, which displays the mention and
the according replies comfortably to the user. In contrast to the first
classification step, the input of this script is already a single file, so the
script itself takes care of selecting the messages randomly.
Figure 5.3 shows an example of the manual classification process. The
user can then enter the numbers of the messages that represent a positive
response, separated by commas. Important terms, such as the username
of the mentioning author are highlighted in green for easier recognition.
All messages that are entered by the user are marked as positive, while
all others are marked negative. The script outputs the data in the simple
format that stores the tweet text and its class in a json array. One array
is stored per line.
The script 02_train.py is subsequently used for training a SVM with
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the manually classified data. Similar to the previous classification step,
it also uses four different approaches to deal with the class imbalance.
The optimal parameters that were determined by grid search are exactly
the same as in the previous classification step and thus are shown in
Table 5.1.
The final step was to predict the remaining responses of the alleged
hacker victims. The script 03_predict.py predicts the classes of these
answers and outputs some statistics about the data set.
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Chapter 6

Qualitative Analysis

This chapter describes the variety of different messages that are handled
within this project. All messages written in italics are actual messages
crawled from Twitter. Newline characters have been removed for visual
purposes. In the remainder of this chapter, the author of a message
containing a mention will be denoted as “A: ”, whereas the alleged vic-
tim is displayed as “B: ”. Some conversations are described in detail,
explaining the background context of them.

6.1 Initial Data
The origin of all analyzed messages is a set of tweets that was crawled by
the DBIS institute. The crawler used reads the public Twitter stream
(see Section 2.1.8), filtered by the word ”hacked”. This results in a very
broad set of messages that can mainly be split into three groups:

1. Messages we are actually looking for, suggesting that other Twitter
accounts have been hacked

@AllRiseSilver is your twitter account hacked?

2. Messages where the author of the suggestion is the alleged victim

Looks like my twitter account got hacked. I didn’t lose 2.5lbs

3. Tweets about other accounts that have been hacked (email, bank-
ing), regardless of the owner

@AmpersUK Looks like you Gmail account hasbeen hacked -
sending requests for money to be lent to you on holiday in the
Ukraine!

The latter two groups are of no interest for this thesis, but the first
one is worth having a closer look at. Messages that do not contain any
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mentions mostly do not have the purpose of informing said person of
any hacking events, as this makes it very unlikely for them to read the
tweet. These messages include stories that are shared amongst friends:

So my stepsister’s account has been hacked and I automatically get
the blame. wow gee thanks.

Also theses tweets are of limited usefulness for the thesis, as without any
mention, there is no way to perform automated analysis of a possible
response.

6.2 Celebrities on Twitter
As shown in Table 4.2, many messages on Twitter are about famous
singers. This is often abused by users that try to collect as many fol-
lowers as they can:

@Calum5SOS hi cal,I hope youre having fun in America!! If you
happen to see this pretty please refollow me,someone hacked you on
my account�

These type of messages are often flooded and reposted over the network.
Sometimes, celebrities’ Twitter accounts get hacked, often resulting in
tweets without mentions, as these messages are not really trying to in-
form the hacked account of anything:

Eunhyuk’s Twitter account got hacked? That’s some scary shit right
there....

The big amount of retweets of these messages cause mentions of celebri-
ties to be amongst the top, also in the positive-set.

6.3 Relevant Suggestions
Having a closer look at the messages that are of interest, different groups
can be distinguished as well.

1. Messages that plainly suggest a hack.

- @AllRiseSilver is your twitter account hacked?

2. Suggestions to take a specific counter action. In many cases users
suggested the victims should change their password:

- @aam429 I think your account has been hacked change your
password good luck

Other measures include looking into the Twitter authenticated ap-

48 Benjamin Murauer



CHAPTER 6. QUALITATIVE ANALYSIS

plications or search for other suitable measures:

- @brijesh58 Did you DM me any link ? Or is your account
hacked ? Check apps you have granted permission.

- @barreltopwagons change password quick! Google twitter ac-
count hacked - very helpful !

3. Retweets of the alleged spam

- Bwahahaha! Is your account got hacked bro? RT @owlcity:
j0mbl0 h4h4h4 lu k3n4 v12u5 4l4y y4? k37ul424n cy4ph4
wkwkwk -___-

4. Some describe the source of the spam in detail. Often, the hacked
account does not send tweets but instead (or additionally) sends
direct messages

- @BeckyBeckyh123 I think your account has been hacked, just
received a spurious DM from you

5. messages referring to the content of the spam

- @jessicalacie I think you’ve been hacked, got a dieting DM
from your account.

- Hey @djonesjax , either you are using amphetamines or
someone has hacked your account

6.4 Responses
Having the according responses to above mentions available, small con-
versations can be analyzed. In general, the first and most obvious dis-
crimination can be made whether the mentioned user responded at all.
A user not responding to a mention can have multiple causes, like not
having regained control over the account:

A: @terrileonard88 you keep tweeting about loosing weight ? Is your
account hacked ?

B: burn the fat off while removing 2 inches or more from your tummy
with http://t.co/dYiXiCSob6

- Quickly burn off stomach fat while dropping 25lbs in a month
using http://t.co/BWn4JYPYWB

- Cut mass from your tummy and drop 21lbs of weight in 30days
http://t.co/y52tZS8Iy4

- …

But other scenarios are more vague. Often, the victim sends valid mes-
sages after the mention and does not respond to anything, leaving the
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question of what actually happened. A user might have responded to a
message but then deleted the conversation, to conceal the hacking event
or just used other communication channels than Twitter for the incident.
Positive responses that confirm the hacking of an account also appear
in a variety of classes. The most straight forward response is a tweet
directly answering the mention:

A: @juzz_hot Hey, think ur account is hacked. Have like 3 DMs
from u within the last 30mins. Change ur password

B: @Alisha_Salik thanks dude! Will do

In many cases, the victim additionally apologized for sending spam by
posting a general tweet rather than responding to a specific mention:

sorry for any recently sent spam messages - my twitter account
was hacked…

Some users also address the content of the spam their account was send-
ing or mentioning that they actually changed their password:

@Hooderman , think I got it changed. sure didn’t loose 20
pounds. Thanks

Even a possible distribution of malware might be uncovered using re-
sponses:

A: @Castricato wtf your account is hacked!
B: @doomilicious lol ya yours too I got a private message from u :p

and 30 other ppl on my twitter account

And sometimes the struggle of regaining control can be seen in the con-
versation:
A: @GraJay Please attend to your (hacked) Twitter account. :-)
B: My account has been hacked - trying to sort- apologies

- Lose 20lbs of body-fat in less than 2 weeks http://t.co/zq0axTbp19
- Lose 20lbs of body-fat in less than 2 weeks http://t.co/jez8iXudb4
- Lose 20lbs of body-fat in less than 2 weeks

http://t.co/nxcupDt9NM
- Think hacked account now sorted-thanks for messages
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Results and Discussion

Of the 54,835 mentions that were analyzed, the second classification
step predicts a total of 16,452 messages to have a positive response.
This means that 30% of the users that were mentioned in a message
suggesting a hack have replied. These responses include both negative
and positive responses, which are not distinguished in this approach.

This number suggests that it is highly feasible to analyze not only the
hacked account itself, but also its peers to detect possible events. This
approach also overcomes previous limitations that content based analyz-
ers are prone to, such as spam distribution over direct messages. Many
posts mention the victim sending messages over DMs, which are not
publicly visible and therefore cannot be analyzed by any API calls.

The results of analyzing the average response times in Figures 4.7 and
4.8 suggest that most users already react quickly to messages mentioning
them. This short time shows that it is important for most users to clarify
what is going on.

7.1 Effect of Lemmatization

Since lemmatizing the input was selected by the grid search to be prefer-
able, this improvement has been analyzed in detail. Figure 7.1 shows
the effect of lemmatizing on the PR-curve. It can be seen that though
time consuming (disabling it improved the runtime by 47%), is very ef-
fective in increasing the performance of the SVM. Naturally, a possible
countermeasure for the processing overhead would be to calculate the
lemmatized texts of each message beforehand.
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Figure 7.1: Effect of Lemmatizing on PR-Curves

7.2 Stop Word, Hashtag, Mention and URL Re-
moval

Intuitively, stop words do not add any specific information to a text and
their position is also irrelevant when using a TF-IDF vectorizer. The
same arguments hold for mentions and URLs, as they are not likely to
appear in relevant posts very often. However, the grid search did not
select the removal of either of these features to be beneficial for the
classification process. Table 7.1 displays the effect of removing hash-
tags, mentions and URLs from messages before training the SVM. The
numbers represent the average of 100 repetitions to minimize deviation.
The data suggests that removing the mentioned fields does not have
a great effect on the performance of the classifier, which is surprising.
However, for some of these fields explanations can be found:

• Mentions: When manually classifying the messages, mentions of
celebrities often are a clear indicator of the message being non-
relevant (see Section 6.2). Considering that these mentions are
common (see Table 4.2), this might actually help the classifier.

• URLs. Considering that URLs are mostly unique, there is a high
chance of a URL being ignored by the TF-IDF vectorizer, which
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Class Hashtag Mention URL f1 recall
1 0.760 0.741
2 ✓ 0.759 0.742
3 ✓ 0.758 0.736
4 ✓ ✓ 0.753 0.738
5 ✓ 0.761 0.735
6 ✓ ✓ 0.759 0.736
7 ✓ ✓ 0.757 0.741
8 ✓ ✓ ✓ 0.758 0.741

Table 7.1: Effect of Preprocessing and Removing Hastags, Mentions
and URLs on the F1 and Recall Score. A Tick in the Table Means the
According Feature was Removed From the Text.

was set to ignore terms occurring less than a specific value. Details
on this parameter are explained in Table 5.1.

Counter-intuitively, removing hashtags is not having any effect on the
classification, which cannot be explained at this point. From the 2,295,831
messages of the mention-set only 219,933 contain hashtags (9.58%),
which might indicate that there are just too few to have an impact
on the classifier.

7.3 Limitations
Due to the complexity of natural languages, it is not always clear whether
a response was the direct result of a mention. In many cases users
respond by apologizing to a larger audience than a single person that
mentioned a possible hack. Of course, this does not infer how the user
was informed about the event itself. Users may have detected the hack
by themselves or by other communication channels.
An important measure that could not be determined due to the Twitter
limitations is the fraction of users that reply to the mention in general.
We analyzed a set of responses and conclude that 30% of the people that
we had access to did respond in a positive way. No conclusions can be
made on how many did respond in total, as the Twitter API restricts
access to old messages.
One problem that occurs often in Twitter data analysis is the influence of
celebrity user accounts. In the dataset that was analyzed, few messages
were retweeted very often. The influence of these few tweets cannot be
estimated at this point and requires further investigation.
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Conclusion and Future
Work

Using machine learning methods, we have shown that a significant amount
of users respond to suggestions of their accounts being hacked. For this, a
TF-IDF feature vectorizer was used together with linear Support Vector
Machines, and several linguistic improvements were tested for suitabil-
ity. A brute force grid search algorithm determined the best parameters
for the classification step.
Additionally, a qualitative analysis shows the variety of different conver-
sation types that have been analyzed.
The results gathered in this research can be used as additional informa-
tion when trying to detect hacked accounts. Many previous approaches
already focus the social environment of Twitter users, but only regarding
the statistics of the follower/followee relationship. Using the content of
messages that suggest hacks could possibly enhance existing methods, as
it overcomes obstacles that can’t be solved by just analyzing the account
itself.
In general, this method could be useful to be implemented along other
methods in order to build or complete more complex spam detection
systems. Using the results described above, several key features may be
improved in further implementations:

• Gather data in real-time. The greatest bottleneck in data anal-
ysis is the reduced amount of tweets that can be gathered after
some time has passed. By implementing a real-time version, the
responses of the alleged victim can be analyzed directly by using
Twitter’s user-streams. This prevents data loss can answer addi-
tional questions, like: Does the user post messages at all or is the
account being suspended at some point? If the user does respond,
is the content legit or actual malicious content? If the user re-
sponds to mentions, what message is being delivered? These ques-
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tions are being answered qualitatively in this thesis, but could also
be answered quantitatively for a suitable dataset. Since the ma-
chine learning part of this approach can be configured beforehand,
a real-time analyzer could be set up easily.

• Use additional information. The presented approach relies only on
the content of the messages themselves. Additional Information,
like analyzing the user relationship between the mentioned user
and the original author or the total amount of followers/followees
may be of interest (e.g. for detecting celebrity user accounts).

• Optimize the machine learning part in the prediction process. This
thesis used SVMs to predict message classes, but other methods
exist. Also, complex approaches for generating artificial messages
for oversampling like SMOTE may be of use.

Together with existing methods that analyze the allegedly hacked user
account itself, a combined detection system could easily be realized.
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Appendix

A.1 Required Parameters for Python Scripts

Step 1 - Data preparation

filter_mentions.py

-i DIR directory containing the sanitized .json files
-o FILE output file to store the mention-set

Step 2 - Extracting the Positive-Set

01_select_random_tweets.py

-i FILE input json file
-o FILE output json file containing the random messages
-n INT number of messages to randomly select

02_classify.py

-i FILE input json file of randomly selected messages
-o FILE output file with classified messages

03_train.py

-i FILE a json file containing manually classified messages
-o FILE the output file where to store the optimal SVM pa-

rameters

04_predict.py

-p FILE The file containing the optimal classifier found by
03_train.py

-o FILE The output json file containing the Positive-Set
FILE… The input json files
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Step 3 - Filtering for Existing Users

01_filter_existing_users.py

-op FILE File location of the output json file that contains
the still existing and available users and their
tweets

-on FILE File location of a list of user names that is no longer
active

FILE… Input json files

Step 4 - Fetching User Timelines

01_fetch_timelines.py

-i FILE input json file that contains grouped mentions
-o FILE output json file containing the timelines

Step 5 - Classifying Responses

01_classify.py

-i FILE Input json file that contains one user dictionary per
line.

-o FILE Output json file.

02_train.py

-i FILE Input json file from the manual classification step
-o FILE Output file that stores the optimal found parame-

ters for the SVM

03_predict.py

-i FILE Input json file from the manual classification step
-p FILE The file containing the optimal found parameters

by the 02_train.py script
-o FILE Output file that stores the optimal found parame-

ters for the SVM
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